
www.manaraa.com

■ * B National Library Bibliothfeque nationale
of C anada du C anad a

Canadian Theses Service Service des th&ses canadiennes

Ottawa, Canada
K1A 0N4

NOTICE

The quality of this microform is heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microtorm is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

AVIS

La quality de cette microforme d6pend grandement de la
quality de la th&se soumise au microfilmage. Nous avons
tout fait pour assurer une quality sup6rieure de reproduc
tion.

S'il manque des pages, veuillez communiquer avec
('university qui a conf6r6 le grade.

La quality d'impression de certaines pages peut laisser a
d6sirer, surtout si les pages originales ont 6t6 dactylogra-
phi6es k I'aide d’un ruban us6 ou si I'university nous a fait
parvenir une photocopie de quality inf6rieure.

La reproduction, mfeme partielle, de cette microforme est
soumise k la Loi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subs6quents.

NL-339 (r. 8W04) c Canada

www.manaraa.com

;■ A- • LJL

£ y j r -
!n

C L A S S IF IE D M O D E L S F O R S O F T W A R E E N G IN E E R IN G
By

Gordon Stuart
B. Sc. University of Victoria, 1970

M. Sc. University cf W estern O ntario, 1973

A Dissertation Subm itted in P artial Fulfillment of the
Requirements for the Degree of

■ • DOCTOR OF PHILOSOPHY
oYu ;j :y ,

in the Com puter Science

DEAN

 ____ We accept this dissertation as
conforming to the required standard

Dr. William W. Wadge, Supervisor (Department oRComputer Science)

_____________________________ y c ______
___________________________________ 5fi_________•, . ,ir. :----- m _.|r .1 im-—.—

Dr. R. Nige^Horspool, Departmental Member (Department of Computer Science)

Dr. Hans MiRleiCDerartm/fntaJ Member (Department of Computer Science)

Dr. David Leeming, Outride Member (Department of Mathematics)

Dr. L. liobertson, Outside Member (Department of Physics)

Dr. Jose Meseguer, Efxternal Examiner (SRI International)

(c) Gordon S tuart, 1991
University of V ictoria

All rights reserved. This D issertation may not be reproduced in whole or in
p a rt, by m im eograph or o ther means, w ithout the permission of the author.

www.manaraa.com

National Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service Service des theses cariadiennes

Ottawa. Canada
K1A 0N4

The author has granted an irrevocable non
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per
mission.

L’auteur a accorde une licence irrevocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, prfiter,
distribuer ou vendre des copies de sa these
de quelque maniere et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
interessees.

L’auteur conserve la propriete du droit d’auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent §tre
imprimes ou autrement reproduits sans son
autorisation.

ISBN 0 - 3 1 5 - 7 1 0 3 8 - 1

Canada

www.manaraa.com

A b s tra c t

Supervisor: W.W. Wadge

In this dissertation it is shown that abstract data types (ADTs) can be spec

ified by the Classified Model (CM) specification language - a first-order Horn

language with equality and sort “classification” assertions. It is shown how these

sort assertions generalize the traditional syntactic signatures of ADT specifica

tions, resulting in all of the specification capability of traditional equational spec

ifications, but with the improved expressibility of the Horn-with-equality language

and additional theorem proving applications such as program synthesis.

This work extends corresponding results from Many Sorted Algebra (MSA),

Order Sorted Algebra (OSA) and Order Sorted Model (OSM) specification tech

niques by promoting their syntactic signatures to assertions in the Classified Model

specification language, yet retaining sorted quantification. It is shown how this

solves MSA problems su<.h as error values, polymorphism and subtypes in a way

different from the OSA and OSM solutions. However, the CM technique retains

the MSA and order sorted approach to parameterization. The CM generalization

also suggests the use of CM specifications to axiomatize modules as a generaliza

tion of variables within Hoare Logic, w ith application to a restricted, but safe,

use of procedures as state changing operations and functions as value returning

operations of a module. CM proof theory and semantics are developed, including

theorems for soundness, completeness and the existence of a free model.

www.manaraa.com

Examiners:

Dr. William W. Wadge, Supervisor (Department of Computer Science)

Dr. R. Nigel/Horspool, Departmental Member (Department of Computer Science)

Dr. Hans Muller, Departmental Member (Department of Computer Science)

Dr. David Leeming, Outside Member (Department of Mathematics)

Dr. L./nJobertso i, Outside Member (Department of Physics)

Dr. Jose Meseguer, Exteriial Examiner (SRI International)

www.manaraa.com

Table o f C ontents

A b s tra c t ii

T ab le o f C o n te n ts iv

L ist o f F ig u res v iii

A ck n o w led g em en t x

1 In tro d u c tio n 1

1.1 The Motivation For Classified M o d els .. 3

1.2 Many-Sorted Algebras (MSA) and Abstract D ata Types (ADT) . 5

1.2.1 An Algebraic S pecification .. 5

1.2.2 A Many-Sorted Algebraic (MSA) Specification..................... 7

1.2.3 The Meaning Of An MSA Specification.................................. 8

1.2.4 W hat Can We Do W ith An MSA Specification?.................. 10

1.2.5 Related W o r k ... 10

1.3 The Problem: D ata Types Are Not The Same As MS A s 10

1.4 Order Sorted Algebra (OSA) And Order Sorted Model (OSM) . . 13

1.5 A Solution: Signature G eneralizations.. 14

1.6 I n s t i tu t io n s ... 15

1.7 Why Use Horn-W ith-Equality For CM Specification? 17

1.8 Thesis O rganization.. 17

2 C lassified M o d els 19

iv

www.manaraa.com

2.1 S y n ta x .. 19

2.2 S e m a n tic s .. 23

2.3 Type P ro p e r tie s .. 27

2.4 Initial M o d e ls ... 28

2.5 Classified Model Deduction 31

2.6 Signatures And Type C h e c k in g .. 35

2.7 Related Work: Order Sorted T e c h n iq u e s ... 37

2.7.1 Similarities Between OSA And C M ... 37

2.7.2 Differences Between OSA And C M ... 38

2.7.3 Unique Aspects Of Order Sorted M e th o d s 39

2.8 Summary ... 40

3 P a ra m e te r iz e d m o d u le sp ec ific a tio n 41

3.1 Param eterized MSA ADT S p e c if ic a tio n s ... 42

3.2 Param eterized Types And Type Operations 44

3.3 The Parts Of A Param eterized Module Specification........................ 45

3.4 Specification Combining O p e ra tio n s .. 48

3.5 An Example: Key Word In C o n te x t.. 49

3.5.1 Kwic Module Specification .. 50

3.5.2 Parameterized Queue ADT S p ecifica tion 53

3.5.3 Parameterized Sorting Queue ADT Specification................. 54

3.6 O ther I s s u e s .. 55

3.7 Related W o r k .. 56

3.8 Summary ... 56

4 C lassified M o d e l S itu a tio n a l Logic 57

4.1 Modules: ADT W ith States As Hidden S o r ts 59

v

www.manaraa.com

4.2 A situational/A D T T ra n s la t io n ... 61

4.3 Situational Stack T h e o ry .. 63

4.4 Related W o r k .. 64

4.5 Summary ... 66

5 S itu a tio n a l H o a re Logic 68

5.1 The Basic Hoare M e th o d .. 69

5.2 A Simple Situational E x a m p le .. 70

5.3 A Situational Stack Hoare V e r if ic a tio n .. 73

5.4 Summary ... 75

6 P ro g ra m S y n th es is 76

6.1 A Blocks-world Synthesis... 76

6.2 Module Implementation M o d e ls ... 81

6.3 Related W o r k ... 83

6.4 Summary ... 83

7 A S oftw are E n g in ee rin g T ech n iq u e 85

7.1 The T e c h n iq u e .. 87

7.1.1 The Module Work Assignment S t r u c tu re 90

7.2 Example: Kwic D e s ig n .. 91

7.2.1 Line Holder M odule ... 93

7.2.2 Circular Shifter Module ... 94

7.2.3 Alphabetizer M o d u le .. 96

7.3 Related W o r k ... 96

7.4 Summary .. 97

vi

www.manaraa.com

8 C o n c lu sio n s , C o n tr ib u tio n s A n d F u tu re R esearch 99

8.1 Conclusions And C o n tr ib u tio n s ... 99

8.2 Future Work . .. iOl

A C lassified H o rn Logic W ith E q u a lity 103

A .l Free S —term M odel... 103

A.2 Quotient Models ... 105

A .3 Proof T h e o r y .. 108

A.3.1 Existence Of The £'-model ^ s (X) ... 108

A.3.2 Soundness And Completeness Of The Rules Of Inference . 112

A.4 Translating CM To An Unsorted Horn S u b s e t 117

A.5 CM Induction Principle .. 120

B ibliography- 124

www.manaraa.com

List o f F igures

1.1 Classified Model Specification (NAT) For Naturals (n a t) 2

1.2 Classified Model Specification STACK-OF-NAT..................................... 2

1.3 MSA specification STACK-OF-NAT... 7

1.4 Order Sorted OBJ2 STACK-OF-NAT sp ec if ic a tio n 14

3.1 Parameterized MSA stack specification STACK (D A T)........................ 43

3.2 Module Specification P a r t s ... 46

4.1 CM Specification Of A Character Counting M o d u le 60

4.2 Situational - ADT conversion .. 62

4.3 Trace Specification - Unbounded. S t a c k ... 65

5.1 While Program Hoare Verification - Integer Case 71

5.2 Loop Body Hoare Verification - Integer C a s e 71

5.3 Axioms For ca rd V ariab les... 72

5.4 While Program Hoare Verification - Situational Integer Case . . . 72

5.5 Loop Body Hoare Verification - Situational Integer C a s e 73

5.6 Axioms For s tk Variables ... 73

5.7 While Program Hoare Verification - Stack C a s e 74

5.8 Loop Body Hoare Verification - Stack C ase 74

6.1 Synthesis Step 1: Well-founded induction s ta te m e n t....................... 78

6.2 Synthesis Step 2: Well-founded induction a p p lic a t io n 78

6.3 Synthesis Step 3; pop less tlrnn theorem ... 79

viii

www.manaraa.com

6.4 Synthesis Step 4: pop less than or equal theo rem 79

6.5 Synthesis Step 5: transitivity a x io m .. 80

6.6 Synthesis Step 6: non-equal t o p ... 80

6.7 S;'nthesis Step 7: recursion introduction .. 81

6.8 Table-List CM S p ec ifica tio n .. 82

6.9 Table-List d e le t6 d e riv a tio n 83

7.1 Kwic Requirements Module Dependency Structure 88

7.2 Kwic Design Module Dependency S t r u c t u r e 92

7.3 Kwic Design Module Work Assignment S t r u c t u r e 92

7.4 Line-of-Word CM Specification .. 94

7.5 LineHolder CM Specification... 95

7.6 Circular S h i f te r ... 95

7.7 Alphabetizer CM Module ... 96

IX

www.manaraa.com

A cknow ledgem en t

I would like to thank my original supervisor, Dr. David Parnas, for introducing

me to Software Engineering and its formalization. I would also like to thank

my current supervisor Dr. Bill Wadge for introducing me to semantics and the

classified approach to specification. To both of these Computer Scientists, and to

Dr. Nigel Horspool who supervised me for a short while between Dr. Parnas and

Dr. Wadge, I am grateful for their guidance and encouragement.

I am aiso grateful to my wife Nancy and to my four children for their patience

and encouragement during many long years of study.

This work was supported in part by grants from the National Science and

Engineering Council (Canada) to Prof. David L. Parnas and William W. Wadge.

www.manaraa.com

C h a p te r 1

In tro d u c tio n

A classified model is the intended meaning of an abstract data type (ADT)

specification written in a specification language that defines sorts by assertions

rather than by the syntactic signatures of conventional ADT specification tech

niques. A specification in the proposed language consists of a set of first-ord*.c

Horn formulas (including the equality predicate) that are universally quantified

over the defined sorts.

For example, the universally quantified atomic assertions and equations in

figure 1.1 specify the natural numbers w ith the operations successor, addition and

multiplication. The first two assertions (declaration assertions) inductively define

the elements of sort mat by asserting in the base case tha t 0 is an element of n a t

and in the inductive step th a t the successor of a natural number is also a natural

number. Universally quantified variables are subscripted with a sort identifier

I indicate that the variable may range over all objects that are asserted by

the specification to be of th a t sort. T he remaining assertions (equations) define

the binary operations using the same base and inductive cases by identifying

(equating) elements of n a t according to the usual meaning of these operations.

T he software structure STACK-OF-NAT is specified in figure 1.2 by extending

th e specification NAT with additional assertions. The extension introduces s tk as

ano ther sort of fundam ental object and defines it by base and inductive cases in

th e first two assertions. T he rem aining assertions define the operations to p and

1

www.manaraa.com

(Jhapter 1. Introduction 2

nat(O)
(Xnat) n a t (s(Xnat))
(^nat) Xnat "I- 0 — ' Xnat

(X n a t j Y n a t) Xn a t T s (^ n a t) ----- 3 (X n a t + ^ n a t)

(Xnat) Xnat * 0 = 0
(XnatjYnat) Xnat * s ("^nat) ----- (Xnat * ^nat) T Xnat

Figure 1.1: Classified Model Specification (NAT) For Naturals (nat)

s tk (s tk n i l)
(SBtk>Xnat) stk(pU Sh(SBtk) Xnat))
(SatkjXnat) t°p(pU.sh(SBtk) Xnat)) Xnat
(SBtk>̂ n<\t) P°p(pu-sfi(SBtkj ^nat)) === SBtk

Figure 1.2: Classified Model Specification STACK-OF-NAT

pop which, respectively, return and remove the most recently push-ed n a t object.

Classified model (CM) specifications can be used like the familiar axiomatic

theories of mathematics (e.g. groups and rings) to prove properties of the un

derlying objects specified or to compute with these objects. For example, using

rules which include the usual algebraic rules of substitution of an expression for

any variable and replacement of a term , by an equal term we can prove from the

above STACK-OF-NAT specification the assertion

(TBtk) n a t (i f T„tk = s t k n i l th e n 0 e ls e top(Tstk))

that the i f - t h e n - e l s e expression is of sort n a t , given the usual definition of

the i f - t h e n - e l s e function. W hen T3tk is not the empty stack, s tk n i l , then

the sort of the i f - t h e n - e l s e expression is the sort of top(TBtk)? i-e. sort n a t

according to the specification. The sort of to p (s t k n i l) is not defined by the

www.manaraa.com

Chapter 1. Introduction 3

stack specification, but the i f - t h e n - e l s e expression has the (arbitrary) value 0

when Tstk is s t k n i l so the i f - t h e n - e l s e expression is also of sort n a t in this

case. Using an induction rule, to be described later, we can also prove from the

specification NAT the assertion

(■^natjYnat) nat(X nat 'b Ynat)

by proving

(Xnat) H at(Xnat H~ 0)

and

(^nat) nat(X nat -b s(a))

from the specification, the declaration n a t(a) and the induction hypothesis

(Xnat) na^(Xnat ~b a).

In a similar way the induction rule can be used to prove other important NAT

assertions such as the associative, commutative, and distributive laws. The order

of proofs is im portant: assertions proved by one application of induction are added

to the specification and used in subsequent induction proofs.

1.1 T h e M o tiv a tio n For C lassified M o d els

The primary motivation for the introduction of classified model specifications

is to encourage the use of specifications in the derivation of properties of the

underlying objects specified. T hat is, to use specifications for more than just

syntactic purposes as, for example, the way a Modula-2 compiler uses a definition

module or an Ada compiler uses a package specification. Instead, a programming

language type system can be implemented in the style of the ML[Wik87] language,

www.manaraa.com

Chapter 1. Introduction 4

similar to the way the i f - t h e n - e l s e expression above can be proved in the CM

system to always be of sort n a t . A conventional syntactically oriented type system

of a language like Modula-2, however, ignores the nature of the Boolean test and

abstracts only its sort. The best that can be concluded using such a type system

is th a t the i f - t h e n - e l s e expression is of a supersort of n a t which includes error

objects (e.g., top of an empty stack) as well. This is one of the approaches taken

in the Order Sorted Algebra (OSA)[GJM85] type system where the supersort of

a sort “S” is known as “S?” . An OSA language such as 0BJ2[FGM 087] also uses

specifications for more than ju s t type checking; 0B J2 executes specifications by

interpreting them as oriented rewrite rules.

In this dissertation a different approach is taken by using specifications for

derivation (theorem proving) rather than directly for computation. Type checking

in the CM system is a special kind of theorem proving. A mote general demon

stration of theorem proving w ith specifications includes the synthesis of a program

from a specification (a special case of planning) in a subsequent chapter. This ap

plication demonstrates the mechanics of derivations with CM specifications, but

does not address the difficult aspects of choosing a proof strategy.

Classified model specifications were also m otivated by the desire to write speci

fications tha t are easily understood. This, plus type checking and theorem proving

in general, suggest th a t specifications:

• allow error values, so th a t for example the s ta c k operation top when applied

to a non-stack object, e.g. to p (O), is not classified as a natural;

• allow polymorphism, so tha t for example a single function head can be

applied to a list of any sort and produce an object of the appropriate sort;

• allow one sort to be a subsort of another sort, so th a t for example natural

www.manaraa.com

Chapter 1. Introduction

numbers may also be integers and integers may also be rationals;

• allow parameterized types, so th a t for example for each type t there is a

type s ta c k (t) with components of type t .

1.2 M an y -S o rte d A lg eb ras (M S A) an d A b s tra c t D a ta T ypes (A D T)

The roots of the specification technique described in this dissertation are :n al

gebra and specifically in many-sorted, or heterogeneous, algebra[BL70][GH78]. An

algebra is a set along with operations over the set. Data types have traditionally

been defined as a set of data domains, or carriers, which have named constants

anu operations over the carriers. Furtherm ore, the carriers are generated from

the constants by use of the operators. D ata types have often been modeled by

algebras having several carriers also known as many-sorted algebras. An abstract

data type has been traditionally defined as a class of data types that are the same

up to renaming of the carriers, constants and operations.

1.2.1 A n A lg eb ra ic S p ec ifica tio n

A single sorted algebraic specification, or definition of an algebra, is a descrip

tion of the properties of the algebra, e.g., the axioms for a group are extended

from the axioms of semigroup and monoid:

D efin itio n 1 (S em ig ro u p) A semigroup is a system (S',-), where S is a set and

• is a binary operation on S which satisfies the associative law:

(a ■ b) • c = a • (b ■ c)

www.manaraa.com

(Jhapter 1. Introduction 6

D efin itio n 2 (M ono id) A monoid is a system (5 ,1 ,-), where (5, •) is a semi

group and I is a designated element of S satisfying the identity:

a • 1 = a = 1 • a

D efin itio n 3 (G ro u p) A group is a system (5 ,1 , -1 , •), where (S , 1, •) is a monoid

and _1 is a unary operation such that

a • a -1 = 1 = a -1 ■ a.

An implicit closure property states th a t the application of any operation above

to elements of S results in an element of S . There is also an implicit universal

quantification of the variable symbols a, b and c over the elements of S.

Familiar examples of groups include the integer and real numbers. Another

group, the “free word algebra” for these axioms, has word objects constructed

from the constant and variable symbols or the operation symbols applied to word

arguments, except that words which are identified by any equations represent the

same object. For example, the word algebra for semigroup includes a, b, c and

a ■ b as well as more complex word objects such as (a • b) • c, which is identified

with a • (b • c) by the single semigroup equation.

The set of all groups is the usual meaning of the group specification. In

contrast, the usual meaning of a da ta type specification is a free term model, and

specifically an initial term model, or standard model, as described below.

Specifications for da ta types in this dissertation are constructed from other

specifications ju st as the group specification is constructed from the monoid spec

ification, which is in turn constructed from the semigroup specifications.

www.manaraa.com

Chapter 1. Introduction

s t k n i l ► s tk
push : s tk , n a t —» s tk
top : s tk —> nat
pop : s tk —► stk

top(s t k n i l) = 0
top(push(S, I)) = I
p o p (s tk n il) = s t k n i l
pop(push(S, I)) = S

Figure 1.3: MSA specification STACK-OF-NAT

1.2.2 A M an y -S o rte d A lg eb ra ic (M SA) S pecification

A data type such as a stack of natural numbers may involve several different

sorts of objects and it is not possible in general to define a data type in terms

of operations over any single sort. If we are concerned with stacks of naturals,

for example, we must deal with operations like push and to p some of whose

arguments and/or results are naturals, not stacks. For this reason it is usual to

use many-sorted algebras[BL70] (MSAs) rather than single sorted algebras.

In figure 1.3 a stack-of-natural is specified in the many-sorted algebra (MSA)

specification style. The first part of the specification is a syntactic signature that

specifies all allowed combinations of function symbols and arguments (a closure

property). An operation name is followed by a colon and the operation arity (a

list of the sort of each argument) and, following the arrow, the sort of the xesult

of the operation. Together, the arity and result sort are called the rank. The

symbol s t k n i l is a constant of sort stack, much like the identity of a group is

an element of the single sort represented by the set S in the group specification.

Combinations of operation symbol and arguments not conforming to the syntactic

signature are not allowed, for example pop(5). The fact that such terms are not

www.manaraa.com

Chapter 1. Introduction 8

allowed is addressed in the next chapter by generalizing this syntax section of a

specification to the status of assertions in the CM specification language.

The second part of the specification consists of implicitly universally quantified

equations indicating combinations which represent the same value. Some of the

allowed combinations of operation symbol and argument do not have to represent

any specific value, for example to p (s t k n i l) is arbitrarily identified with zero in

this example. The fact that the value of to p must be specified for all objects of

so’-t s tk (specifically, for s tk n i l) is a shortcoming of the MSA method th a t is

addressed in the next chapter.

1.2 .3 T h e M ean in g O f A n M S A S p ec ifica tio n

The meaning (semantics) of a MSA specification is commonly selected as one

of the following:

C lassical semantics includes all possible many sorted algebras having the prop

erties described by the specification. This is analogous to the meaning of

single sorted specifications such as group.

In i t ia l algebra semantics [GTW78] selects a particular many-sorted algebra tha t

is the most general in a sense described below.

F in a l algebra semantics [Wan79] is a diametrically opposite approach to initial

algebra semantics.

A word algebra of an MSA specification can be constructed in the same way

as the word algebra described above for the group example. The objects in a free

word algebra may contain variable symbols, but objects in an initial word algebra

contain only ground terms having no variable symbols. The representative names

www.manaraa.com

Chapter 1. Introduction 9

for objects of the initial word algebra are terms formed according to the signature,

modulo the equations. That is, any two terms are considered to represent the same

object of the initial word algebra if they are formed from constants and operations

which can be to be proved equivalent as a consequence of the equations by using

the usual inference rules of algebra (replacement and substitution). The objects

of the initial word algebra of an MSA specification are therefore the equivalence

classes of ground terms and it can easily be seen tha t, for example, s t k n i l and

p o p (p u s h (s tk n i l ,2)) represent the same object of the above word algebra. This

initial algebra has been characterized[MG85] as:

G e n e ra te d ; The specified objects have names. Each object in any generated

algebra is represented by some ground term of the signature.

G en eric : The algebra is the most general possible in the sense that any other

algebra is a special case of a generic algebra, e.g., only those objects are iden

tified (equated) which the specification requires to be identified. A generic

algebra corresponds to a world where only those ground equations are true

which are either in the specification or follow from these by application of

the usual algebraic rules of inference, i.e., substitution and replacement.

Since each algebra in the class of all initial algebras defined by a specification

is isomorphic to the initial word algebra [MG85], the la tter is regarded as the

representative of the class and the meaning of an MSA specification.

A final algebra, if it exists, for an MSA specification is an algebra in which

objects are identified unless the specification requires them to be distinct.

www.manaraa.com

Chapter 1. Introduction 10

1.2.4 W h a t C an W e Do W ith A n M SA S pec ifica tio n ?

The techniques of term rewriting [HO80] generally determine how we can rea

son with equational specifications. We might wish to know if another equation is

a consequence of the axioms n a specification, e.g., if 0 + x = x is a consequence

of the group axioms. We may also compute with equations by regarding them

as oriented rewrite rules, e.g., functional programming languages. The state-of-

the-art in equational reasoning, or the extensions of equational reasoning to Horn

logic with equality, dep :nds upon advances in the theory of term rewriting and

theorem proving in general.

Besides reasoning with axioms we can use them just as specifications. As

described in [BG77], we should not build monolithic specifications. We should

instead construct large specifications from smaller ones using appropriate tech

niques of parameterization or by otherwise extending previous work as above for

the group example.

1 .2 .5 R e la te d W o rk

The literature on MSA and related techniques is so vast tha t even a dated

bibliography such as [KL83] has over 1800 titles. Since a current bibliography

is surely much larger, no attem pt is m ade to summarize related work. A recent

explanation of MSA is given in [MG85]. Some of the lim itations of the MSA

technique are cited in work such as [Maj77].

1.3 T h e P ro b le m : D a ta T y p es A re N o t T h e S am e A s M SA s

As noted earlier, data types have traditionally been defined as a set of data

domains, or carriers, which have named constants and operations over the carriers.

www.manaraa.com

Chapter 1. Introduction 11

Furthermore, the carriers are generated from the constants by use oI the operators.

A many-sorted algebra is a set of disjoint sets along with operations over the sets.

D ata types have often been studied formally as many-sorted algebras, but data

types are not just many-sorted algebras. A number of problems encountered in the

interpretation of data types as many-sorted algebras cannot be resolved within the

many-sorted algebra formalism. First, the “constructor-selector” [GM87a] problem

cannot be solved within the MSA formalism. O ther problems involve:

• Error values,

• Polymorphism, and

• Subsorts.

Error values result from nonsensical combinations of operations. Recall that

in the MSA formalism the sort of an operation is dictated by its signature so

th a t, for example, in the STACK-OF-NAT MSA specification the to p of any stack,

including the empty stack, is a natural number. There are several ways of dealing

w ith the problem. We can ignore the problem by assigning default values to

the problem combinations, e.g., to p (n i l s tk) = 0, but then it is very hard to

even formulate the concept of a safe program. Alternatively, we can introduce

special error objects explicitly, but then the specification is complicated by the

requirement to qualify some equations with preconditions or to distinguish “ok”

equations from “error” equations.

Polymorphism (overloading) is the use of the same operation symbol with

various argument and result sorts. Because in the MSA formalism the sort of each

operation symbol is dictated by the signature, we must use a different operation

symbol for each different argument and result sort. For example, the addition

www.manaraa.com

Chapter 1. Introduction 12

operator is used in mathematics and in most programming languages as an

overloaded operator for natural numbers, integers, rationals, etc., but in the MSA

formalism we must use a different symbol for each different use. To make m atters

worse, each of these operations needs its own copy of the “generic” specifying

equations that are given in the introduction to this chapter.

Subsorts are not allowed in the MSA formalism. The resolution of this problem

is fundamental to the solution of the two previous problems. If, for example, we

consider the natural numbers to be a subsort of all the possible values returned by

the STACK-OF-NAT operation top , then it makes sense to consider top (s tk n i l)

as just a member of the supersort. Similarly, if we consider the natural numbers

as a subset of the integers and the integers as a subset of the rationals, we can

easily consider a polymorphic addition operator.

The main problem with the MSA formalism is tha t its sort structure is based

on a simplistic approach to sorts in which each operator is sorted statically in a

signature declaration. In the beginning of the ADT research effort many-sorted

algebras may have appeared to be an appropriate formalism for data types, but

over time enough troublesome cases have been presented to warrant the consider

ation of more general formalisms. The solution suggested in the classified model

approach is to generalize the notion of sort so that different terms constructed

from the same operation symbol can perhaps have different sorts and so th a t a

single term, or set of terms, can have more than one sort. This also induces a

subsort relation among sorts.

www.manaraa.com

Chapter 1. Introduction 13

1.4 O rd e r S o rted A lg eb ra (O SA) A nd O rd e r S o rted M odel (O SM)

Order sorted algebra (OSA)[GJM85| techniques generalize MSA by providing

a subsort partial ordering among the sorts. Operator overloading and nonsensical

application of function symbols, “errors” , are handled by restricting functions

to subsorts. Order sorted model (OSM) techniques generalize OSA ' , allowing

predicates and Horn formulas instead of just conditional equations.

For example, a stack-of-natural, w ith subscrt n s tk standing for non-empty

stack, is specified in the order sorted specification language 0B J2 of figure 1.4.

The first indented statement indicates tha t the natural numbers, n a t, are neither

extended or contracted, i.e., an 0 B J2 specification NAT is enriched to STACK-OF-NAT

The next two statements indicate th a t s tk (a stack) and n s tk (non-empty stack)

are sorts, where n s tk is a subsort of s tk . The lines starting with “op” form a

syntactic signature that specifies, as in MSA, all allowed combinations of function

(operation) symbols and arguments. The “var” statem ents declare variables for

the following equations indicating combinations which represent the same value.

Sound and complete rules of inference exist for OSM[GM87b] and include the

MSA and OSA systems as special cases.

The Order Sorted methods are an improvement over the many scrted tech

niques since some of the problems mentioned above are solved. But, the subsorts

of OSA induce a new problem which does not arise with the old “pigeon-holing”

MSA approach in which each term has exactly one sort. It is not possible to

reason about the sort of the value of an expression, i.e., about special values ail

expression may have because of special properties of the algebra, as we did in the

opening section of this chapter for an i f - t h e n - e l s e expression.

www.manaraa.com

Chapter I. Introduction 14

obj STACK-OF-NAT is
protecting n a t .
sorts s tk , n s tk .
subsorts n s tk < s tk .
op s t k n i l > s tk .
op push : s tk n a t —> n s tk .
op to p : n s tk —> n a t .
op pop : n s tk —> s t k .
var I : n a t
var S : s tk
eq to p (p u sh (S ,l)) = I .
eq pop(push(S ,l)) = S .

jbo

Figure 1.4: Order Sorted 0 B J2 STACK-OF-NAT specification

1.5 A S o lu tion : S ig n a tu re G e n e ra liz a tio n s

The technique chosen in th :s dissertation to solve the problems of MSA is to

generalize the notion of a signature and of the sort of an operation. Recall tha t the

sorts of an MSA are not ordered, and th a t each operation symbol has a unique sort

prescribed by the syntactic signature. Polymorphism can be achieved in the CM

proposal by allowing an operation symbol to have more than one so rt. Subsorts

can be achieved by allowing a partial order on the sort symbols to be induced by

sort declarations of terms in the assertion language. This is the Classified Model

approach of this dissertation.

The classified model (CM) approach to the specification and verification of

abstract data types and modules (abstract da ta types w ith hidden “state” sorts)

allows a semantic rather than syntactic definition of subsorts. A classified model

is a single sorted model which has a classification of its universe into a family of

not necessarily disjoint subsets.

www.manaraa.com

Chapter 1. Introduction 15

1.6 In s t i tu t io n s

Many basic results hold in more than one logical system (MSA, OS A, CM)

and the notion of mstitufzon[GB84] was introduced as a generalization of “logical

system” . An institution consists of:

• a collection of signatures (or vocabularies) and signature morphisms for each

signature E;

• a set of E-sentences which can be formed from the vocabulary;

• a set of E-models;

• a satisfaction relation for each signature: E —model S —sentence.

such that the satisfaction relation is invariant under signature morphisms. All

of the logical systems described above are institutions and all (but not full first

order logic) are “liberal” institutions. Goguen and Burstall state in the abstract

of [GB84]:

A first main result shows tha t if an institution is such that interface

declarations expressed in it can be glued together, then theories (which

are just sets of sentences) in th a t institution can also be glued together.

A second main result gives conditions under which a theorem prover

for one institution can be validly used on theories from another; this

uses the notion of an institution morphism. A third main result shows

that institutions admitting free models can be extended to institutions

whose theories may include, in addition to the original sentences, var

ious kinds of constraints upon interpretations; such constraints are

www.manaraa.com

(Jhaptcr I. Introduction 16

useful for defining abstract data typer, and include so-called “data” ,

“hierarchy” and “generating” constraints.

Several specification languages, e.g., Clear[BG77], 0BJ[FGM 087] and ACT

ONE[EM85] are defined for specific liberal institutions, but by the results cited

above many of their concepts can be safely translated to other liberal institutions.

That is an impo tant thrust of this thesis: many of the parameterization and mod

ularization techniques already defined in the literature can be transferred to the

CM institution. The reason for this is th a t any CM assertion is easily relativized

to an equivalent assertion in the Horn-with-equality institution by simply omitting

the sort subscripts from variable symbols and including in Ahe antecedent of the

assertion a corresponding sort predicate of the altered variable. This translation

can also be expressed as an “institution morphism” [GB84]. The im portant point

is th a t the Horn-with-equality logical system is a liberal institution[GB84].

The results of [GB84] specifically show th a t for the Horn-with-equality liberal

institution:

• The first main result of [GB84] states th a t existing parameterization tech

niques can be used w ith Horn-with-equality which has a “free construction”

which allows interface specifications to be glued together.

• The second main result of [GB84] states th a t we can use a general first order

deduction technique for Hom-with-equality.

• The third main result of [GB84] states th a t we can use all the constraint

mechanisms of languages like Clear[BG77].

www.manaraa.com

Chapter 1. Introduction 17

1.7 W h y U se H o rn -W ith -E q u a lity For C M Specification?

The first order language of Horn formulas w ith equality is sufficiently restricted

to allow the desirable free construction property, with all of its implications for

parameterization.

It is also the richest first order language which admits initial models. That is,

after an axiom is changed in, or added to, a specification there is still some initial

model for the specification. Any set of first order axioms having this property

are provably equivalent to a Horn theory[Mak87]. All of these results also apply

to this thesis since the first order language of Horn formulas with equality is

co-extensive with the classified model specification language having syntactically

sorted variables.

1.8 T h esis O rg an iza tio n

Chapter 2, Classified Models, is a description of the main points of the classified

model approach. All detailed definitions and proofs have been deferred to an

Appendix A.

Chapter 3, Parameterized Module Specifications, is a description of existing

parameterization and modularization techniques for the basic classified model

specifications of Chapter 2. This chapter concludes with a parameterized key-

word-in-context (kwic) module CM specification that depends upon parameterized

CM ADT specifications for queue and sorting queue. This example illustrates how

specifications can be constructed from smaller parts.

Chapter 4, Classified Model Situational Logic, establishes a notation for a

situational logic which depends for conciseness upon the flexible sort structure of

the classified model approach.

www.manaraa.com

Chapter 1. Introduction 18

Chapter 5, Hoare Logic and Situational Classified Model Specifications, applies

the situational logic to a generalization of the Hoare logic for program verification.

This application has the potential to allow the safe use of procedures and functions

in a Hoare verification when they are used in the context of operations upon a

module specified by the CM technique.

Chapter 6, Program Synthesis, is another application of the situational logic

in which CM specifications are used in the synthesis of programs. An advantage

is noted for CM specifications over more general first order specifications cited in

the literature.

Chapter 7, A Software Engineering Technique, describes a practical software

engineering technique which supports the theory of this thesis that procedures

and functions can be used safely in the context of module operations.

Chapter 8, Conclusions and Further Research, lists the major results of this

work and its potential for further development.

Appendix A, Classified Horn Logic W ith Equality, contains a detailed proof

for each of the results reported in C hapter 2.

www.manaraa.com

C h ap ter 2

C lassified M o d els

The signature section of a conventional MSA or of an order sorted specification

embodies a fundamental assumption of these methods: they are based on a notion

of sort which is primarily syntactic. T hat is, a type system based upon a signature

is a classification of syntactic objects, i.e ., expressions. The sort of an expression

is dependent upon the sorts of its sub-expressions.

In the classified model (CM) approach the declarations of a MSA signature are

promoted to the status of full fledged assertions. The information that is coded

in a conventional signature, and more, can be expressed as declaration assertions.

W ith this view, a type system is prim arily a classification of semantic objects, i.e.,

of data objects. The sort of an expression can be deduced as a theorem and is

not just a syntactic consequence of the sorts of its sub-expressions.

Although the classification perm itted by the order sorted methods is more

sophisticated than those allowed by the MSA technique, the implications of the

signature remain the same. The CM approach can be viewed as carrying the

enrichment from MSA to order sorted methods to its logical conclusion.

2.1 S y n tax

The definition of the language of classified model specifications (the CM lan

guage) is divided into three parts. The vocabulary introduces disjoint sets of

symbols which are used to construct the language. The terms and formulas give

19

www.manaraa.com

Chapter 2. Classified Models 20

formation rules for the construction of legal objects of the language.

The vocabulary consists of symbols th a t have a fixed meaning and symbols

whose meaning is to be defined, also known as a signature. In the applied logic,

or object language, used in specification examples the symbols of the signature

are in the te le ty p e font and the symbols are chosen to convey to the reader the

defined meaning. In metatheoretical proofs, such as soundness and completeness,

the symbols of the signature are metavariables th a t range over the symbols of the

object language. These metavariables are depicted in sans serif type font.

D efin itio n 4 (V o cabu lary) The vocabulary consists o f all the defined symbols

of the language.

1. The implication connective is —

2. A set o f signatures is defined, where a specific signature S contains function

and predicate symbols o f defined arities, or number o f argument places.

(a) The function symbols include the constant (0-ary function) symbols.

(b) The predicate symbols include:

i. the propositional constant (0-ary predicate) symbols,

ii. the sort (unary predicate) symbols, and

iii. the infix binary identity predicate “= ”, which is different from the

metalanguage equally symbol “= ”.

3. A set o f unsorted variable symbols is defined.

4- A set o f sorted variables symbols is defined, where each sorted variable symbol

is subscripted by some sort predicate symbol.

5. The universal quantifier (A!) is defined, where X is any set of variables.

www.manaraa.com

Chapter 2. Classified Models 21

Notation:

1. Script symbols are used to represent:

(a) an arbitrary formula, e.g., T represents either an atomic formula or a

Horn formula (defined below);

(b) a collection of variables, e.g., X)

2. Brackets “| ” and “J” are used to enclose CM syntax objects in mathematical

expressions.

The set of E(,Y)—terms is constru* ted from a signature II and a set of variables

X by combining function symbols w ith operand expressions.

D efin itio n 5 (S (<T)—T erm s) The set o f T ,(X)—terms is defined inductively from

a signature S and a set of variables X by:

1. every variable symbol in X in a term;

2. i f to , . • • j t n_i are terms and f is an n-ary function symbol, f/ienf(to ,. . . , t n_i)

is a term.

The set of ground E —terms, 11(0), have no variable symbols.

The set of formulas is constructed from the set of terms by using the implication

logical connective and universal quantification.

D efin itio n 6 (Z —F o rm u las) The set o f E — formulas is defined inductively from

a signature S and a set o f variables X by:

1. if to , . . . , t n_ i are S (X) —terms and P is an n-ary predicate symbol, then

is an atomic formula;

www.manaraa.com

Chapter 2. Classified Models 22

2. i f A is an atomic formula (the head) and the set {

are atomic formulas (the body) then Bq, . . . , Bn_i —> A is a Horn formula;

3. i f X is a list o f variable symbols and T is an atomic or Horn formula,

then (X) F is a closed formula, where X includes (at least) all the variables

occurring in all the terms in J-.

A Horn formula with no body is identified with an atomic formula having just the

head, but not the implication connective.

Whenever “formula” is mentioned below, it is assumed to be closed unless

otherwise stated.

D efin ition 7 (S u b s ti tu tio n) Let E be a signature, let X and y be sets o f vari

ables and let d be a function 9 : X —> E([V). 9 is called a substitution function

and can be extended to a function 9* : S(«Y) —> E([y):

1. for each variable symbol X in X , 9*X = 9X

2. for each n-ary function symbol f, = f(#*to,. . . , 0*tn_ i).

3. for each n-ary predicate symbol P, 0*P(to,. . • , t n_ j) = P(^*tg,. . .

9* can also be applied to a Horn form ula by applying it to each individual atomic

formula.

9* is commonly abbreviated as 9.

D efin itio n 8 (S p ec ifica tio n) A specification S = (E,r) consists of a signature

E and a set o f closed E — formulas T.

T he following term inology is used:

www.manaraa.com

Chapter 2. Classified Models 23

1. An equation is an atomic formula constructed from just the equality predi

cate.

2. A conditional equation is a Horn formula constructed from just the equality

predicate.

3. A base assertion is an atomic formula constructed from a unary predicate

symbol.

4. A generation assertion is a Horn formula having a unary predicate symbol

in the head.

5. A declaration assertion is a base or generation assertion.

6. A declaration is an instance of a unary sort predicate.

2.2 S em an tic s

The semantics of the CM language provides a meaning for the syntax objects

described above by defining:

1. E-model for the elements of the signature;

2. assignment function for variables;

3. extended assignment function for terms;

4. tru th in a model for closed formulas.

D efin itio n 9 (E -M odel) For any given signature E, a H-model M is a pair

{Dm ,&m) where

1. Dfrf is a non-empty set called the universe, or domain, of M ;

www.manaraa.com

Chapter 2. Classified Models 24

2. c*m is a E —interpretation function which assigns:

(a) for each 0-ary function (i.e., constant) symbol c in S ; a ^ Jc] £ D m !

(b) for each other n-ary function symbol f in E a function a ^ J f] : (D m)71 —>

Dm ;

(c) for each 0-ary function (i.e., propositional) symbol P in E an element

a«IP) e { T ,F } ;

(d) for each other n-ary predicate symbol P in E a subset ccjjffP]] o f the

Cartesian power (D m)71- The truth set o f the equality predicate must

be {< d,d> : d £ Dm }-

Like a conventional single sorted model, there is no a priori notion of sort for

operation symbols. The sets (a (s) : s is a sort symbol} correspond to the carriers

in a conventional MSA. In a classified model M there might be elements of the

universe which are not in any of the “carriers” . These are error objects which

are the result of operations such as pop(stknil) tha t have no intended purpose.

It is shown below that for “normal” specifications in which every term in the

specification is of some classification these extraneous objects cause no difficulties

in practice.

A particularly im portant E(<T)—Term model is defined by generation over a

set of variable symbols.

D efin itio n 10 (E (A)—T erm M o d e l T%(X)) Let E be a signature and X a set

of variables, then T%(X) is the H-model with universe the set o f 'E(X)—terms and

an interpretation mapping a for the symbols in E such that:

1. each E (X) - t e r m is interpreted as itself, that is:

www.manaraa.com

Chapter 2. Classified Models 25

(a) for each variable X G X : afXJ = X

(b) I f t o , , tn_i are H (X) —terms and f is a n-ary function symbol, then

2. fo r the identity predicate symbol: a | =] = { < t ,t> : t is a X(A’)—term };

3. any sort predicate symbol s is interpreted as just the set of sorted variables

that have that sort subscript, i.e., a js j = {Xs : Xs is a variable with sort

subscript s };

4- any other predicate symbol P is interpreted as the empty set, i.e., o .|P | = {};

7 s (0) is abbreviated 7^.

Any E —model is given a E(«Y)—model structure by extending a ^ —interpretation

by an assignment function which interprets the variable symbols.

D e fin itio n 11 (A ssig n m en t F u n c tio n) Let H be a signature, let X be a set of

variables, let M = (Dm ,&) be a H-model with interpretation function a and let

9 be a function 0 :X —> Dm (0 is called an assignment function / The extended

assignment function 9* interprets T.(X) —terms and formulas.

1. fo r each variable symbol X € X , #*[XJ = 0|XJ.

2. fo r each constant symbol c, 0*fc] = a|c]j.

3. fo r each function symbol f, 0*[f(to, . •. , t n_i)J = aj*](0*|[to],.. •, 0*l[tn_iJ).

4. fo r each propositional symbol P, 0*[PJ = at[Pj

5. 0‘ Jtj = l 2J = T i f9*{t i l = 0*tt2], and = t 2] = F otherwise.

6. fo r each predicate symbol P, 0* |P (to ,. . . , t n- l) l — T if

< ^ [t 0] , . . . , « i t n- 1I> € oclPj, and ^ | P (t 0, . . . , t n l)l = F otherwise.

www.manaraa.com

Chapter 2 . Classified Models 26

7. for each Horn formula, 0*[Bo, • • •, Bm_i —> AJ = T if

whenever 0*|BjJ = T fo r i = 0 , . . . , m — 1 then $*[AJ = T ,

and 0*fBo,. . . , Bm-1 -> A] = F otherwise.

D efin itio n 12 (S o rte d A ss ig n m en t) An assignment function 6 :X —► Dm is a

sorted assignment function i f whenever Xs 6 X then 0[XsJ € ot[sJ, and similarly

for an extended sorted assignment.

D efin itio n 13 (T ru th In A M o d e l) 27ie tru th value o f a closed formula (X) 3-

in a model M with universe D m and interpretation function a is defined by ex

tending a to a function a*:

a*l (X) 3-]j = T i f 9*\fF\ = T fo r any sorted assignment 6 :X —> Dm ?

and a*l (X) fF\ = F otherwise.

D efin itio n 14 (5 -M o d e l, (=) Let S be a signature and T a set of S — formulas.

For a specification S = (E>r), a form ula (X) T and any Yt-model M with inter

pretation mapping a:

1. M 1= (X) T (M satisfies (X) T , or {X) T is valid n M) i f fa*{(X) fF\ = T

2. S-model: a H-model that satisfies all formulas o fT;

3. Mod(S): the class o f all S-models;

4- T h (M) : (theory o f M) the set o f all H-formulas that are valid in M ;

5. S |= (X) T ((X) T is a logical consequence of S) i f f (X) J- is satisfied in

any S-modeP.

Along with the definition of model, it is useful to define a homomorphism

between models as a structure-preserving mapping.

1F (= T is an abbreviation for S [= T when S is obvious from the context of S — (S , T).

www.manaraa.com

Chapter 2. Classified Models 27

D efin itio n 15 (E -H o m o m o rp h ism) Let M and N be H-models with interpre

tation mappings a and (3, then h : D m —* Dn 25 o- E-homomorphism if:

1. f c (a [f j (d 0 , • • • , d n - i)) = @ m { h (d o) , . . . , / i (d n _ i)) for every n-ary function

symbol f and all do, . . . , dn_i E Dm -

2. i f <d0, - ■ - , dT _i> E a fP] then <h(d0), - - - ,h(dn^i)> E /3|P] for every n-ary

predicate symbol P and all do,. - -, € Dm -

2.3 T y p e P ro p e r t ie s

Declaration assertions allow explicit formulation of the type properties of ex

pressions which in other systems are formulated implicitly by the signature. The

availability of declarations relieves us from the necessity of encoding sort informa

tion in a syntactic form (as in an MSA or order sorted signature) and at the same

time is much more general as well. The simplest classified approach would include

in the signature just equality and sort predicate symbols, but the generalization to

arbitrary predicate symbols does not change the type structure and also has some

advantages in the expressibility of specifications. It also makes sense to include

this more general signature because all of the same mathematical concepts that

are needed to formalize the simplest approach are needed as well for the general

approach, as shown in Appendix A. The simplest approach was first described by

W .W . Wadge[Wad82], on which much of this chapter is based.

For example, the CM declaration assertion

(fstackj l in t) S"tack(push.(Tstack) lin t))

replaces the conventional MSA syntactic typing of push as

push : s ta c k , in t —» stack .

www.manaraa.com

Chapter 2. Classified Models 28

Polymorphism can be accom m odated by using more th an one declaration; for

example,

(^ n a t j Y n a t) n a t (} i . n a t + Yn&t)

(X i n t , Y i n t) i n ’f c (X i n t 4 " Y i n t)

(X r e a lj T r « a l) r e a l(X rea X 4" Yra a i) .

Declarations can also be used to specify an ordering between sorts: the dec

laration (Xint) rea l(X in t) asserts th a t sort i n t is a subsort of sort real. This

declaration is true in a model M w ith interpretation function a iff a (in t) is a

subset of a (r e a l) .

Declaration assertions can be used to give “special case” sort information which

cannot be deduced just from sort information of subterms, for example:

(Xreal) Xraai)

(Xint, Yxeai) in t (i f True thenX int e l s e Yxaai)

(Xreax) r e a l (i f Xraai > 0 th en sqrt(X xaai) e l s e s q r t (-X xaai))

2.4 In it ia l M odels

The specification of abstract data types and modules2 was the prim ary motiva

tion for the development of the classified approach. A specification is a collection

of assertions which is satisfied by the models of the intended data types and op

erations. In general, a specification has many different models. That is, there

are many different models in which all the assertions in the specification are true.

The set of initial term models of the specification is one particular collection of

models associated with the specification which have a claim to be the intended

standard models.

3 A module is a generalization of abstract data type in which some sorts are designated as
“hidden stale” sorts.

www.manaraa.com

Chapter 2. Classified Models

An initial term model, defined below, can also be characterized as a model

which is:

G e n e ra te d : The objects we specify must have names. Each object in any gen

erated model is represented by some term of the signature.

G en eric : Tbe model is the most general possible in the sense that any other

model is a special case of a generic model, e.g., only those objects are iden

tified which the specification requires to be identified ar i only those objects

are classified as sort s which the specification requires to be so classified.

The initial model is therefore the minimal solution to the specification in the sense

th a t the tru th set of each predicate symbol (including =) is minimal.

D e fin itio n I t (In itia l M o d e l) Let C be a class o f E-models. A E-model I £ C

is called in itial in C iff for each E-model M G C there is a unique E-homomorphism

h : I - > M .

If C is of the form Mod(T), where T is some set of E-formulas, we also say that I

is initial for T.

A generalization of initiality is given by freeness:

D e fin itio n 17 (F ree M o d e l) LetC be a class o f E-models, X a set o f variables

and M E C. A E-model F x E C is called free over X in C iff there is a sorted

assignment u: X —»• Dpx , called a universal mapping, such that for every sorted

assignment 9 :X —► Dm there is a unique E-homomorphism 9' : Dpx —> Dm such

that 9 — 9' o u .

www.manaraa.com

(1 hi.])ter 2. Classified. Models 30

DFx „_____- ___ X

Dm

Like the MSA and order sorted systems, there is always an initial model in

the class of models satisfying a set of Horn formulas [Mak87]. Furthermore, it

is also shown in [Mak87] that any (finite) first order specification tha t admits an

initial model is equivalent to a (finite) Horn specification. For a specification S

in a language C to admit an initial model means tha t 5 has an initial model and

for anj set of assertions C of £ the specification S U C also has an initial model,

but no!, necessarily the same initial model. This is an im portant characteristic

for program specifications which evolve through enrichment by additional asser

tions or are parameterized by other specifications to be included later. Therefore,

if it is im portant to ensure th a t a specification has an initial model then it is

fruitless to search for first order specification languages more powerful than Horn

specifications.

An im portant result of this dissertation, proved in the Appendix, is th a t any

classified model specification has a free term model.

www.manaraa.com

Chapter 2. Classified Models 31

2.5 C lassified M o d el D e d u c tio n

In the '"'-M method sorts are declared b)'- assertions, whereas in the Order

Sorted method sorts are declared in a syntactic sort declaration section that is

separate from the assertions. The semantic consequence of this is that classified

models may have “error” objects th a t are not in the tru th set of any sort predi

cate, e.g., p o p (s tk n i l) in the stack example. These objects do not even exist in

order sorted models but they are rendered harmless in the classified model system

since the rules of inference described below introduce only classified terms into

a proof derived fiom a specification having only classified terms, i.e., a “normal

specification” .

D e fin itio n 18 (C lassified E -T erm) Let S = (E,I?) be a specification and let

t be a H(X)—term, then t is a classified E-term iff in the initial H-model with

interpretation a and for all sorted assignment functions 9 that extend a there is

a classification s £ E (perhaps depending upon 9) such that:

0 * { t) € a(s).

D efin itio n 19 (N o rm al S p ec ifica tio n) S = (S,r) is a normal specification iff

each term t appearing in T is a classified H-term.

It is shown in the Appendix th a t a variant (reproduced below) of the order

sorted model rules of [GM87b] are sound and complete for atomic formulas of

the CM system. Even incompletely specified operations are allowed because irom

a normal specification the rules allow the introduction of only classified terms.

Incompletely specified operations are not the same as partial functions because

in the initial model, and also in the free model, every term of the language has a

www.manaraa.com

Chapter 2. Classified Models 32

meaning. The classification, or lack of classification, does not affect the existence

of a defined meaning for each term of the language.

The set of derivable formulas is defined by the following set of rules of inference.

Each formula below is universally quantified, where all the variables appearing in

such a formula are represented in the list of variables.

1. Reflexivity: (X) t --= t is derivable.

2. Symmetr, If [X) t = t ' is derivable then (X) t ' = t is derivable.

3. Transitivity: If (X ') t = t ' and (X ") t ' = t" are derivable and if X = X ' U X "

then (X) t = t" is derivable.

4. Substitutivity: if (X \) tj = t- is derivable and if X = UX\ for i = 0 , . . . , n — 1

then:

(a) for any n-ary function symbol f in S the equation

(*) 1(10) • • , V - l) = *(*'()> • ■ • ^ n - l) is derivable;

(b) for any n-ary predicate symbol P in S , if (X) P(to , . . . , t n_i) is deriv

able then (X) P(tQ,. . . ,t'n_ j) is derivable.

5. Modus Ponens: If (X) B o , . . . , B m_j —» A is derivable and if 9 :X —> Z (y)

is any substitution such that:

(a) each (y) 6Bj is derivable for i = 0 , . . . m — 1, and

(b) ([P) s(0Xs) is derivable for each Xs G X ,

then (30 0A is derivable.

www.manaraa.com

Chapter 2. Classified Models 33

The substitution in rule 5 of a set of terms ^ ([y) for a set of variables X

includes the notion of change of variables, as well us the elim lation and intro

duction of variables. In such a substitution a term of must be provably

of sort s if it is substituted for a variable Xs of sort s. This substitution reflects

the fact that it is im portant to include explicit quantifiers in any specification

since any variable can only be eliminated by replacing it with some term which

is provably of the same sort. It is this rule th a t in a derivation from a normal

specification restricts the introduction of terms to those th a t are provably of the

same classification.

For example, rule 4b is illustrated w ith the equation

W »«) 2 * 4 » t = 4 « * 2

and the assertion

(X e v e n j 6 V e n (X e von + (2 * X ^ ^ .))

to infer

(X8van)Xillt) even(Xaven + (Xint * 2)).

Also, rule 5 is illustrated by using the assertion

(Xpo»,Xp0a) pos(Xpos + Xp0B)

and the substitution 6 : {(Xpos, Ypos)? >Y'int * Y'int)}> where the sort of 0 1 '^

is assured by the assertion

(Yint) pos(Y^n t *Y'in t),

to derive

(Yp0a,Yillt) pos(Yp0B i (Yint * Yint))'

www.manaraa.com

Chapter 2. Classified Models 34

These rules can also be applied to more general formulas.

Let S — (E,T) be a specification w ith assertions T and suppose that we are

interested in proving certain properties of the data types specified. Any assertions

which can be derived using the rules of inference just given are true in all models.

There are non-ground assertions which are true in the initial model but which are

not true in other models of the specification and so cannot be derived using the

ordinary rules of inference. For example, the commutative law of addition is not a

consequence (via the five rules) of Lie specification of the natural numbers given

earlier.

An induction rule is a stronger rule of inference which takes into account the

special features of the initial model. The universe of the initial model contains

only those data objects required to exist by the specification. In the CM system

we can state tha t the classified elements of the initial model are exactly those

which are generated by the declaration assertions in the specification. Therefore

we can state a rule allowing assertions to be proved by induction on the complexity

of the structure of the data objects of a given type.

Suppose th a t E is a signature, th a t S = (E,T) is a specification, th a t s € E

is a sort symbol th a t appears in the assertions S and tha t P(XS) is an atomic

assertion involving the variable Xs of sort s (and possibly others, possibly of other

sorts, as well). Let A\ —> s(tj) for i = 1 . . . n be all the declaration assertions for

the sort s in S , where the body A\ of each declaration assertion is either empty

or a set of atomic assertions.

1. Form a new sequence t ̂ , . . . , t „ of terms in which each tj is the result of

replacing all variables of sort s in tj by new constant symbols c j , . . . , cm not

already in the signature E.

www.manaraa.com

Chapter 2. Classified Models 35

2. Prove, using the ordinary rules of inference, the assertions P(t';) for i < n.

In doing so we use S, the declarations s(cj) (j < m) and the induction hy

potheses P(cj) (j < m). Having done so, we can conclude that P(XS) is true

in the initial model of S.

One of the advantages of this induction rule is that it allows proofs to be

formulated entirely within the object language, i.e., essentially that used by pro

grammers. I t does not require knowledge of, or reference to, metamathematical

notions such as that of a homomorphism. The soundness of the CM induction

rule is proved in Appendix A.

2.6 S ig n a tu re s A n d T y p e C h eck in g

An obvious difference between a semantically based method such as CM and

other more syntactically based specification methods is th a t with the CM tech

nique there are no operation sorts and any operation can be applied to any

operand. Does this mean tha t we m ust abandon syntactic type checking? The

answer is “no” , but with syntactic type checking we might not realize the full

potential of the CM method.

For each sort symbol s of a specification S = (S ,T) there is a set of expressions

t for which s(t) is true in the initial model of S . Since this classification may not in

general be decidable we cannot expect to have an algorithm which checks the sorts

of expressions. However, for any set of declaration assertions (without equations)

in r the syntactic classification is decidable. From any specification S we can

form another set T of assertions such that:

1. each element of T is true in the initial model of S (i.e., it is true of the sorts

specified);

www.manaraa.com

Chapter 2. Classified Models 36

2. the syntactic classification induced by T is decidable.

We can say th a t the type checking w ith respect to T is “partially correct” . The

type checker can determine tha t an expression is of some sort, bu t there might be

some expressions for which the type checker might not determine the least sort.

For example, some value is always an integer even though the best that the type

checker can do is classify it as of sort real. Fortunately, partial sort information

is sufficient in many applications.

The CM technique allows the form ation of expressions in an arbitrary fashion

that is foreign to the more common strongly typed languages. For example, a

queue can be added and integers can have a f r o n t operation applied. A language

implementer does not have to provide a programmer with the full CM capability

since the implementer could always select some set T (as described above) and re

quire tha t expressions in a program be “classifiable” according to T . For example,

given the OBJ2 (an OSA language) goal of executing specifications, it is probably

appropriate to restrict the type checking to the syntactic form. Thus, 0 B J2 can

be considered a CM language in which an additional constraint has been imposed

by the language designer. If the goals of a language include performing derivations
*

about the properties of programs, it m ight be appropriate to adopt the general

CM approach. The strength of a CM type discipline depends inversely on that

of T since the formal CM system does not prescribe the strength but leaves the

decision with the language designer (where it belongs). M ilner’s ML language has

inspired much of this work.

There is a need for some restrictions on programs and specifications in order

to avoid consideration of “error” term s. This ‘s the purpose of “normal” specifi

cations in which each term that appears in the specification can be classified in

www.manaraa.com

Chapter 2. Classified Models 37

the initial model. In combination w ith the rules of inference and the induction

rule we are assured tha t unsorted terms cannot appear in a proof since none of

them appear in the specification and they cannot be introduced by the rules.

2 .7 R e la te d W ork : O rd e r S o r te d T ech n iq u es

A language implementer can, as described in the previous section, select a type

mechanism th a t is more strict than the mechanism described for the Classified

Model concept. For example, a syntactic signature and a corresponding strong

typing mechanism can be chosen because of language implementation constraints

such as parsing considerations. An OSA language such as OBJ could be considered

an implementation of CM because it restricts the language to a manageable subset

th a t can be implemented.

The classified approach was intended for more than just execution of specifi

cations. This broader purpose includes execution as well as deduction th a t can

be used, for example, in ML-style type checking or for proof of specification prop

erties.

The following subsections compare OSA and CM by first focusing on their

similarities and then upon the characteristics th a t distinguish them.

2 .7 .1 S im ila r itie s B etw een O SA A n d C M

Both OSA and CM are m otivated by the desire to solve fundamental problems

w ith MSA in the areas of overloaded operators and the treatm ent of errors. Both

techniques find solutions in the introduction of subsorts, although they difFer in

the method of specifying subsorts. In this dissertation it is shown that OSA and

CM can use similar rules of inference, although CM is formalized in a different

www.manaraa.com

Chapter 2. Classified Models 38

setting with proofs similar to the published OSA formalization. In [GM89] it is

shown that a version of OSA having a universal sort, similar to the CM approach,

encompasses the published versions of OSA.

Parameterization issues are identical for OSA and CM since both are liberal

institutions. This could be called “specification-in-the-large” because it relates

the ways tha t components of a larger specification are glued together. The con

struction of basic specifications by either OSA or CM techniques could be called

“specification-in-the-small”. The CM technique described in this chapter supplies

just “specification-in-the-small” syntax, whereas both types are included in OSA

languages such as OBJ. Like the param eterization issue, both OSA and CM have

the same module (ADTs with hidden states) concepts.

2 .7 .2 D ifferences B etw een O SA A n d C M

OSA is an extension of MSA, whereas the classified method is not constrained

to just a syntactic assignment of sorts to terms. T hat is, the classified type

system, which includes the MSA and OSA syntactic typing as a special case, does

not determine the sort of an expression strictly from the type of its subexpressions.

Instead, sorts are determined according to assertions of the specification language.

Subsort declarations differ in OSA and CM according to the fundamental dif

ference in their orientation. Subsort declarations of OSA are part of the syntactic

signature, whereas they are included in the assertions of the classified approach.

The counterpart of OSA sort constraints is the CM use of sort predicates in the

antecedent of a forrmda to constrain the use of some sort. For example, an OSA

sort constraint is applied in a bounded stack signature for push to limit the number

of push terms. The CM counterpart uses an antecedent formula in a declaration

www.manaraa.com

Chapter 2. Classified Models 39

assertion. Subsorts in the CM technique are usually declared inductively inde

pendently of the supersort, because this often results in simpler derivations of

properties of the subsort. This is in contrast to the OSA practice of defining each

sort in terms of its sub-sorts, although this can be derived from the inductive

form.

A fundamental difference between models of OSA and CM is that a CM initial

model contains terms that do not exist in the corresponding OSA initial model.

These are “error” terms that correspond to unintended uses of the operations.

In an OSA initial model some of these terms occur in “error supersorts” of the

declared sorts, whereas in the CM technique any operation can be applied to

any term (s). In the CM technique we can also declare error supersorts for the

anticipated errors. The arbitrary application of operations to term(s) appears at

first glance to present a problem. These term s, however, are not perm itted in

derivations from normal specification using the rules of inference and induction

rule presented in this chapter.

2 .7 .3 U n iq u e A sp ec ts O f O rd e r S o r te d M e th o d s

The order sorted methods have the following[GM87b] characteristics:

M o n o to n ic ity co n d itio n : Suppose an operation “op” is “overloaded” by hav

ing both the declaration op : Sj , . . . , sn —> s and the declaration

op : s ' j , . . . ,s'n —> s'. Suppose also the subsort partial order includes s; < s';

for i = 1 , . . . , n. Then for the specification to satisfy the monotonicity con

dition it must be the case tha t s < s'.

R e g u la r s ig n a tu re : Each te rm has a defined least sort.

www.manaraa.com

Chapter 2. Classified Models 40

The monotonicity condition ensures consistency between subsort declarations and

operation declarations. That is, it ensures th a t the operation declarations do not

imply a subsort relation contrary to th e subsort declarations. In the CM system

the monotonicity condition is unnecessary because subsort relations are inferred

from the term sorts that are declared by the Horn assertions, so there can be no

conflict in declarations. In the CM system the best we can do with regard to

regularity is to prove some sort for each term , but it might not be the least sort.

2.8 S u m m ary

The classified model specification technique has a defined syntax and seman

tics that has been related (in an appendix) by theorems showing soundness and

completeness results and tho existence of a free model for any classified model

specification. Furthermore, there is an induction rule tha t can be used to prove

results ? i the initial term model.

www.manaraa.com

C hapter 3

P a ra m e te r iz e d m o d u le sp ec ifica tion

The main purpose of the Classified Model approach to the specification of Ab

stract Data Types is to allow explicit reasoning about the types of expressions.

This is described in the previous chapter in the form of basic specifications tha t are

m eant to be read and understood independently of any other specifications. This

basic form is adequate for short specifications, but Burstall and Goguen[BG77]

argue that large specifications should be glued together from smaller specifications

in order to break the larger specification into smaller understandable parts. The

intention is th a t if each of the smaller parts can be understood and if the mech

anism for gluing them together can be understood then the meaning of a larger

specification can be constructed from the meaning of its parts. Their specifica

tion building process is independent of th e basic specification technique, provided

the basic technique has a “free construction” which makes it a liberal institution.

Furthermore, the specifications resulting from such a construction have an initial

model (and free model) semantics.

Goguen and Burstall s tate in [GB84] th a t first-order Horn logic with equality is

a liberal institution. The Classified Model logic is easily identified with this liberal

institution by simply relativizing the CM language. This is done by replacing

the sorted variables of each assertion by unsorted variables and simultaneously

placing a unary sort antecedent for each such variable in the assertion. This

means that classified model specifications can be combined (glued together) to

41

www.manaraa.com

Chapter 3. Parameterized module specification 42

form new specifications which have an initial model semantics. The techniques for

combining theories used here are those pioneered by Burstall and Goguen[BG77]

and developed for the specification languages Clear and OBJ. A concrete syntax

for a language to combine specifications is avoided by applying directly to the basic

specification style already demonstrated a simple syntax for the parameterization

statements in a language like 0BJ[FGM 087].

3.1 P a ra m e te r iz e d M S A A D T S pecifications

Parameterized specifications such as STACK(DAT) of figure 3.1 consist of an

MSA specification with a formal param eter, or requirements, sub-specification

such as DAT. The requirements specification is actualized with some actual specifi

cation such as NAT (the natural numbers) to form a specification such as STACK (NAT)

The actualization is specified with a binding which provides a correspondence from

the signature of the requirements specification to the signature of the actual spec

ification such tha t all the assertions of the requirements specification under the

correspondence are valid in the initial model of the actual specification.

For example, the parameterized MSA specification STACK (DAT) of figure 3.1

contains the formal parameter sub-specification DAT consisting of just the signature

d > d a t having just the sort d a t and the constant d and no other operations or

equations. The correspondence from the DAT specification to a specification NAT of

the natural numbers is just the correspondence from the sort name d a t to the sort

name n a t and the correspondence from the d a t constant d to the n a t constant 0.

The syntactic meaning of STACK (NAT) is the union of a NAT specification and

the previous STACK-OF-NAT specification, assuming the actual specification and

www.manaraa.com

Chapter 3. Parameterized module specification 43

s t k n i l > s tk
push : s tk , dat —> s tk
to p : s tk — > dat
pop : s tk - ; s tk

to p (s t k n i l) = d
top(push(S, T.)) = I
p o p (s tk n il) ; s t k n i l
pop(push(S, I)) =■ S

Figure 3.1: Param eterized MSA stack specification STACK (DAT)

the non-parameter p art of the parameterized specification have no names in com

mon. The semantics of STACK (NAT) is the same as the semantics of the union of

NAT and STACK-OF-NAT, i.e., the initial algebra. It is derived from the semantics

of STACK (DAT), which is more complicated.

The semantics of a parameterized specification such as STACK (DAT) cannot

be based upon the initial algebra of the specification because it might happen

th a t there are no constants in either the parameterized specification or the DAT

requirements sub-specification and therefore the generated initial algebra might

be empty. To remedy this, many authors (e.g., [BG77]) consider the meaning of a

parameterized specification to be a transform ation of any actual algebra (one that

can be substituted for the requirements specification) to an algebra of the target

specification. This target algebra can be constructed to be free and therefore also

initial[EM85] if the substituted algebra is also free.

A special case of parameterization is given by the enrichment construction

dem onstrated in the semigroup, monoid and group example. In this case the

www.manaraa.com

(! hup tar 3. Parameterized module specification 44

specification correspondence is an inclusion and the meaning of the monoid spec

ification is based upon the meaning of the semigroup specification by the trans

formation described above. We can also have requirement specifications that are

themselves parameterized, e.g., group is parameterized by monoid and monoid is

parameterized by semigroup. This construction has a property that the order of

substitution is not im portant.

Enrichment is often used (as in the semigroup, monoid and group example) to

write a specification in terms of one or more other specifications. This technique

is demonstrated in a classified model specification of a keyword-in-context module

that is described in terms of a parameterized queue and a parameterized sorting

e ieue.

3.2 P a ra m e te r iz e d T y p es A n d T y p e O p e ra tio n s

Specifications can be combined either by means of parameterization, as de

scribed above, or by type operations such as union and intersection. We could

allow type variables and user-specified operations on types to appear within speci

fications, but we do not, because many of the requirements of specification building

can be met by separating the basic first order classified module specifications from

the ways of combining them. Such a two level specification language is investi

gated by Wadge[Wad90]. The specification combination operations described in

this chapter are a subset of operations th a t are already in use for other liberal in

stitutions such as MSA. These operations are independent of the underlying first

order specification technique (such as MSA or CM) and they are defined so that

they transform some first order param eter specification into an appropriate first

order target specification. Other operations not discussed here include placing

www.manaraa.com

Chapter 3. Parameterized moduJe specification *15

other types of constraints upon the formal parameter specification.

The operations on basic (and combined) specifications are:

C o m p o sitio n : Like function composition, in which two specifications can be

hooked together because one specification supplies the requirements of a

second specification. That is, the second specification is written in terms of

the first specification.

A c tu a liz a tio n : Like function application, in which an actual specification re

places a formal requirements specification within a larger specification.

U n ion : Like set union, in which the meaning is the union of the meanings of the

individual specifications.

3.3 T h e P a r ts O f A P a ra m e te r iz e d M o d u le S pec ifica tion

Each module specification (Goguen[Gog86], [BEPP87]) MOD consists of four

partial or whole CM specifications called param eter (PAR), export interface (EXP),

im port interface (IMP) and body (BOD) which are related by the diagram of Fig

ure 3.2 in which each arrow represents a correspondence between the signature of

the specification part at the start of the arrow and some part of the signature of

the specification part at the point of the arrow. When symbols are translated ac

cording to the correspondence, tru th in the specification at the start of the arrow

must be preserved in the specification at the point of the arrow.

The four parts are described briefly here and demonstrated in Figure 3.2.

The export interface (EXP) reveals only the operations and sorts available to

the module user and consequently defines the hidden state sorts of the module

as those of BOD which do not have a counterpart in EXP via the specification

www.manaraa.com

Chapter 3. Parameterized module specification 46

e
----------- > Exp

I
I
I v
I
I

V

 > bod

s

Figure 3.2: Module Specification Parts

correspondence v. This corresponds to the definition of a module as an abstract

data type in which some of the sorts have been designated as hidden such that

expressions of those sorts cannot be evaluated and are therefore hidden from

observation. These are distinguished from the visible sons which exhibit the

observable behavior of a module as a result of evaluation of terms of visible sort.

The im port interface (IM P) is also defined by a specification correspondence

as the set of operations required to complete the specification BOD. That is, the

specification BOD is written in term s of IM P in the sense that BOD refers to

operations of IMP, but the operations are defined in IMP.

The body part (BOD) is the main part of the CM specification and is complete

except perhaps for the IMP part.

The param eter part (PAR), defined by specification correspondences to IMP

and EXP, represents the part common to the import and export sections. It is

distinguished from the IMP pa-t by the capability of actualizing this requirements

part by any specification which does not violate its axioms, i.e., there is a speci

fication correspondence from the PAR requirements to the actual specification.

For example:

PAR

v
IMP

www.manaraa.com

Chapter 3. Parameterized module specification 47

1. A parameterized ADT specification corresponds to the case of the vertical

arrows representing identity specification correspondences, resulting in just

a single horizontal arrow. This case is described in detail in [EM85] and

corresponds to the MSA specification for STACK (DAT) in the introductory

part of this chapter.

2. A non-parameterized module specification corresponds to the case of the

horizontal arrows representing identity specification correspondences. For

example, any basic CM specification such as STACK-OF-NAT can be consid

ered a non-parameterized module specification if some sort such as s tk is

considered hidden such th a t term s of tha t sort are not available for evalua

tion.

3. A param eterized module CM specification example is STACK (DAT), below:

P A R : A specification DAT consisting of just one sort name “d u t” . The

inclusion correspondence goes to EXP and IMP. This requirement is

easily m et by any specification with at least one sort. Recall th a t a

specification is a pair consisting of a signature of operation and predi

cate names and a set of assertions (possibly empty) of that signature.

IM P : The specification depends only upon the im port specification for sort

name d a t so IMP is the same as PAR and is defined by the identity

correspondence from PAR.

E X P : A specification with the sort names d a t and s tk and operation names

push, pop and to p in the export interface. The specification correspon

dence is the inclusion to BOD. Neither s t k n i l nor any other term of

sort s tk is exported.

www.manaraa.com

Chapter 3. Parameterized module specif cation 48

B O D : The stack classified model specification, given in a previous chapter,

but in a relativized form here:

s tk (s tk n il)

(S,X) stk(S),dat(X) —> stk(push(S,X))

(S,X) stk(S),dat(X) —» pop(push(S,X)) = S

(S,X) stk(S),dat(X) -> top(push(S,X)) = X

The specification correspondences above are simply the inclusion, but this can

be generalized to include also renaming correspondences which are required to

avoid unintentional name conflicts.

3 .4 S p ec ifica tio n C o m b in in g O p era tio n s

Following [BEPP87], three simple ways are given to combine specifications

to form larger specifications. In this section some simple syntax corresponding

to specification building operations is introduced to facilitate the expression of

combinations of the operations.

C o m p o sitio n : MODI -M0D2 designates a new module which results from m atch

ing the export interface of M0D2 with the im port interface of MODI. This

corresponds to the idea of defining MODI in term s of MOD2 and is expressed

by a specification correspondence from MODI to M0D2 th a t expresses the way

tha t EXP2, the export component of M0D2, meets the requirements of IMP1,

the im port component of MODI. Additionally, there is a PARI to PAR2 spec

ification correspondence. The new composite module has the same export

interface and param eter part as MODI, the same import interface as M0D2

and a body consisting of the body part of MODI with IMP1 replaced by B0D2,

www.manaraa.com

Chapter 3. Parameterized module specification 49

the body of M0D2.

A c tu a liz a tio n : A new (parameterized) specification results from the substitution

of an actual (parameterized) data type specification for the parameter part

PAR of a module specification MOD via a specification correspondence from

PAR (the requirements, or formal specification) to the body of the actual

specification. If the actual specification is parameterized then the parameter

part of the new specification is the parameter part of the actual specification,

otherwise it is empty. The other parts of the new specification are the union

of the corresponding parts of the actual specification and the specification

MOD.

U n io n : MODI + M0D2 designates the union of modules, where any common sub-

modules are represented only once in the union.

For example, the parameterized specification STACK (DAT) can be actualized

with NAT and expanded according to the construction descriptions for union and

actualization, i.e., the expanded specification is STACK-OF-NAT union NAT.

3.5 A n E x a m p le : K ey W o rd In C o n te x t

The specification of a “kwic” (keyword in context) index generation module

has often been described in the literature as the task of accepting as input a set

of, for example, book, titles and producing a sorted list of all the rotations of all

input titles. A variation not considered here is to eliminate some rotations that

s ta rt with common words such as “and”, “of” , .e” etc.

The following representation of the problem reflects fundamental assumptions

regarding the sequential nature of words within lines and sorted lines in the kwic

www.manaraa.com

Chapter 3. Parameterized module specification 50

index. These assumptions are reflected within the interface, first informally in the

EXP list below and then formally in the BOD specification. Note that the difference

between the EXP and BOD parts is tha t only expressions of the operations on the

EXP interface can be evaluated by the user of the module, although he or she is

allowed to read the BOD part to determine the meaning of the EXP operations.

Since titles consist of a sequence of atomic words and the words are rotated,

each title is conveniently represented by a queue of words, which is easily rotated

given the usual queue operations. Since titles are sequentially presented to the

kwic module and sequentially extracted in sorted order from the module, the titles

(queues of words) are arranged in order by a sorting queue. A sorting queue is

really just a general purpose sorting module in which the results are returned

(and removed) one-at-a-time instead of in the familiar sorted array. This provides

flexibility for the implementer since not only is the sorting algorithm not specified,

but neither is the sort-time, i.e., it is not specified tha t all input items must be

maintained in sorted order at all times or partially or fully sorted just before

output. O ther representations have been used in the literature to describe kwic,

but the above is based upon the fundam ental assumptions.

3 .5 .1 K w ic M o d u le S p ec ifica tio n

The kwic module specification is:

P A R : The ADT NAT given in the introductory chapter and a specification for

an ADT WORD having a partial order of its objects. These are related by

the inclusion correspondence to EXP and IMP. The final specification is

actualized with an actual specification for WORD such that the usual axioms

for a partial order are satisfied.

www.manaraa.com

Chapter 3. Parameterized module specification 51

IM P : The union of the specifications of sorting queue of line and a queue of word

(to buffer words of an incomplete line), both of which also contain speci

fication NAT for their “length” functions. These are given in the. following

sections.

E X P : The exported sorts are n a t and word (and their operations). The exported

kwic operations (with informal descriptions) are:

1. S ta r tL in e ln indicates tha t a new line is started for input.

2. SetWord supplies an additional word sequentially to the new line.

3. EndLineln indicates tha t an input line is complete.

4. G etLine extracts the alphabetically first line from tne kwic index,

5. RemoveLine removes the alphabetically first line from the kwic index.

6. GetWord returns the first word from the most recently extracted line.

7. RemoveWord removes the first word from the most recently extracted

line.

8. LineLen returns the current length of the most recently extracted line.

The specification correspondence to BOD is the inclusion.

B O D : The body of the specification is the following classified model specifica

tion, where “< ” and “> ” are constructors for a tupling operation for objects

of sort s t (for state). Since the state sort is hidden, any convenient repre

sentation will suffice. The state sort consists of a pair having first part a

sorting queue and second part a queue. The queue operations add, remove,

f r o n t and q le n are defined in a parameterized queue specification of the

www.manaraa.com

Chapter 3. Parameterized module specification 52

next section, as are the corresponding operation names sadd, sremove and

sfront, for a parameterized sorting queue.

KO: (SBq, Qq) S t(< S 8q, Qq>)

Kl: (SSq,Qq) SetL ineIn (<SBq, Qq>) = <S8q, q n il>

K2: (SRq, Qq, Setword(<SBq, Qq>, W„d) = ^Saq, add(Qq, W^j)^

K3: (SBq,Qq) EndLineIn(<SBq, Qq>) = < kw icin (S Bq, Qq, qlen(qq)), qq>

K4: (^sqjQq) G etLine(<SBq, qq>) = < S Bq, s fr o n t(S Bq)>

K5: (S8q, qq) RemoveLine(<SBq,qq>) = <srem ove(SBq),Qq>

K6: (S8q, qq) GetWord(<Ssq, qq>) f r o n t (q q)

K7: (S8q,Qq) ReaoveWord(<S8q,Qq>) = <SBq,rem ove(qq)>

K8: (S8q, Qq) LineLen(<S8q, qq>) = ^l®^(qq)

K9: (Ssq, Qq) kw icin(S8q, Qq,0) = SBq

K10: (SBq, qq,Nnat) kw icin (S8q,qq,Naat "H l) =

sadd(kw icin(SBq, r o ta t e i (q q),NIiat) ,r o t a te l (q q))

K ll: (Qq) r o ta te l(q q) = sadd(remove(qq),fron t(Q q))

A concrete specification is constructed by actualizing the parameter part of

the above with STRING-OF-CHAR for WORD and the standard specification for NAT.

The BOD part of the specification contains operations k w icin and r o t a t e l

which do not appear in EXP. The operation r o t a t e l rotates a queue of words by

one word. The k w icin function is used to express the way that a queue of words

is put into the kwic module. For example, to understand an application of the

k w icin function, abbreviate the three element queue add(add(add(qnil,b), c),a)

by bca and compute:

s fr o n t(k w ic in (sq n il,b c a), 3)

www.manaraa.com

Chapter 3. Parameterized module specification 53

s fro n t(sa d d (k w ic in (sq n il, cab, 2), cab))

sfro n t(sa d d (sa d d (k w ic in (sq n il,a b c , l) , abc), cab))

sfron t(sa d d (sa d d (sa d d (k w icin (sq n il,b ca , 0),b ca), abc), cab))

sfron t(sa d d (sa d d (sa d d (sq n il,b ca), abc), cab)

abc

3 .5 .2 P a ra m eter ized Q u eu e A D T S p ec ifica tio n

A param eter specification defines a sort q a t as the set of all the objects, in

some theory with equality, tha t will be pu t in a queue.

The sorts defined below are: q is the set of all queues and nq is the set of all

non-nil queues. Also, q n i l is the distinguished nil queue.

Q l: qC qnil) (q base)

Q2: (QqjXqat) q(add(Qq, Xqat)) (q generator)

Q3: (Xqat) nq (add(qn il, Xqat)) (nq base)

Q4: (QnqjXjjat) nq(add(Qnq, Xqat)) (nq generator)

Q5: (Xqat) rem ove(add(qnil, Xqat)) = q n i l (restore nil)

Q6: (Qnq,Xqat) remove(add(qnq,Xqat)) = add(removc>(£lnq),Xqat) (remove front)

Q7: (Xqat) f ro n t(a d d (q n il, Xqat)) = Xqat (single front)

Q8: (Qnq? Xqat) f r o n t (add(qnq, Xqat)) = f r o n t (Qnq) (same front)

Q9: q le n (q n il)= 0 (nil zero)

Q10: (Qq,Xqat) qlen(add(Qq, Xqat)) = qlen(Qq) f 1 (non-nil successor)

The usual axioms for a partial order could also be supplied so that a queue

could be used as the param eter type for sorting queue.

www.manaraa.com

Chapter 3. Parameterized module specification 54

3 .5 .3 P a ra m e te r iz e d S o rtin g Q u eu e A D T S pecification

The set of objects to put in a sorting queue is defined in a parameter specifi

cation for a sort s a t (the set of all atoms) in some theory with equality, < and

< .

The sorts defined below are: sq is the set of all sorting queues, sq l is the set

of all sorting queues with at least one element, and sq.2 is the set of all sorting

queues with at least two elements. Also, s q n i l is the distinguished nil sorting

queue.

SQ1: sq (sq n il) (sq base)

SQ2: (Q.q,X,a t) sq(sadd(qBq,XBat)) (sq generator)

SQ3: (X8at) sq l(sad d (sq n il,X Bat)) (sq l base)

SQ4: (qBqi,X Bat) sql(sadd(Q Bql,XBat)) (sq l generator)

SQ5: (XBat,YBat) sq2(sadd(sadd(sqn il,X 8at),Ysat)) (sq2 base)

SQ6: (qsq2,XBat) sq2(sadd(q8q2,XBat)) (sq2 generator)

SQ7: (XBat) srem ove(sadd(sqnil,X 8at)) = s q n i l (restore sqnil)

SQ8: (Q»qj.)XBnt) s f ro n t(q Bqi) < XBat —>

sremove(sadd(q8qi,X8at)) = q8qi (remove sadd)

SQ9: (q8qi,X Bat) s f ro n t(q 8qi) > X,iat -> (remove front)

sremove(sadd(qBqi,XBat)) = sadd(sremove(q8qi),X8Qt)

SQ10: (X8at) s f ro n t(sa d d (sq n il,X Bat)) = X8at (single-front)

SQ 11: (qBqi,X8atj s f ro n t(q 8qi) < X8at ►

sfro n t(sa d d (q 8qi,X8at)) = XBat (sadd-front)

SQ12: (q8qi,X 8at) s f ro n t(q Bql) > XBat -*•

s fro n t(sa d d (q Bqi,XBat)) = sfron t(Q Bqi) (same-front)

SQ13: s q le n (s q n i l) =0 (nil zero)

www.manaraa.com

Chapter 3. Parameterized module specification

SQ14: (Q8q,XBat) sq len(sadd(qsq,Xaat)) = sqlen(Q 8q) + 1 (non-nil successor)

3.6 O th e r Issues

It could be argued that the specification style described here is merely a logic

program (with equality) and that th<. kwic example is not really a specification

because it is “coded” in terms of the queue and sorting queue specifications. Any

description (i.e., specification) must be expressed within some language. Simple

specifications like STACK (DAT) require no supporting specification for descriptive

purposes because they are so simple. Such specifications are the exception and in

general it is better to specify small parts th a t can be joined using a well-defined

construction w ith appropriate semantics. The alternative is to write monolithic

specifications such as those tha t can be obtained by textually expanding the kwic

specification expression. It can be claimed th a t such a monolithic specification at

least depends upon no other specification, but an inspection of the result would

show that all the sorting queue and queue concepts would be buried within the

work in some obscure way.

Finally, it should be emphasized th a t the possible choices for the underlying

specifications are quite broad. Another choice, discussed in Chapter 8 (Software

Engineering Techniques), is described by Parnas[Par72b]. Although Parnas does

not give a formal specification of a kwic module, he does give specifications for

modules th a t would form a suitable basis for implementing the kwic module: a

line holder module, a module to form circular shifts of lines and an alphabetizer

module. The kwic task could also be described in terms of these implementation

modules which were selected because of their maintainability.

www.manaraa.com

Chapter 3. Parameterized module specification 56

3.7 R elated W ork

Goguen[Gog86] describes a concrete syntax that implements all of the opera

tions of s chapter (and more). Specifically, module parameterization is referred

to as horizontal composition of specifications, dependence of a body specification

upon some import specification is referred to as vertical module composition and

information hiding commands correspond to the export interface. Goguen de

scribes many ways that programs can be reused and suggests that specifications

glued together in this way may be directly executed, provided the equational as

sertions of a specification conform to certain restrictions. He also suggests th a t

specifications can be transformed into implementations, a subject that is also

addressed in this dissertation.

3.8 Sum m ary

In summary, basic specification languages th a t are also a liberal institution

qualify for the module param eterization techniques th a t are described in this

chapter. Since the combining operations have a well-defined semantics that has

been developed for other liberal institutions, they are assumed for the remainder

of this dissertation.

The kwic classified model specification demonstrates the techniques in a simple

context that require many of the module parameterization techniques.

www.manaraa.com

C hapter 4

C lassified M od el Situational Logic

The classified model technique allows the definition of theories in a situational

logic, i.e., a logic in which states are explicit objects. For example, in the kwic

specification of the previous chapter the export interface does not include the

state sort “s t ” , yet exported predicate and function symbols each have a state as

one of their arguments and the tru th of any assertion may vary from one state to

another. Recall tha t any sort having a prohibition upon evaluation of its terms is

a state sort. Therefore, the exported operations should not require the evaluation

of state terms and they should not appear within the exported operations. In this

chapter it is shown how the classified model approach can be used to separate

the state terms from the exported term s so tha t state terms are not arguments of

the exported operations. This also corresponds to the way imperative languages

usually treat states and can be viewed as a restriction upon the use of a term of

state sort that corresponds to the restriction imposed by the EXP interface of the

previous chapter. This separation corresponds to the specification of immutable

sorts as visible sorts and the specification of m utable sorts as the hidden sorts of

a module specification.

The support of polymorphic and incompletely specified functions within the

classified model technique is the key feature of the method th a t allows a situa

tional logic. For example, an alternative classified model specification of the kwic

problem of the previous chapter exploits *he fact tha t operation symbols and

57

www.manaraa.com

Chapter 4. Classified Model Situational Logic 58

can be defined to be polymorphic and that not all instances of their applica

tion need to be classified. The infix operation symbol is known[MW87b] as the

production function because its left argument is a state, its right argument is any

term constructed from a “state changing” operation and the new “;”-term is the

new state. The infix operation symbol is known[MW87b] as the return func

tion because its left argument is a state, its right argument is any term constructed

from a “value returning” operation and the new “:”-term represents a value of a

non-state sort. Both of these operations are assumed to be left associative.

While axiom KO is unchanged from the previous chapter, axiom K l is typical

of the situational translation of the kwic specification. The production function

allows the separation of the state term <Ssq, qq> from the fluent [MW87b] term

S ta rtL in e ln . The remaining axioms are translations of the same form, where

the return function is used instead when a term is some non-state sort.

KO: (SBq, Qq) s t (< s Bq,q q>)

K l: (SBq,Qq) < S Bq, Qq>; S ta r tL in e ln = <SBq, q n il>

K2: (SBq,q q,WBd) < S Bq,q q>;SetWord(WBd) — < S Bq, add(qq,WBd)>

K3: (s Bq, qq) < SBq, qq>; E ndLineln = < kw icin (S Bq, qq, q len(qq)), qq>

K4: (SBq, qq) < SBq, Qq>; G etL ine = <srem ove(S8q), sfro n t{S 8q)>

K6: (s Bq, qq) < S Bq, qq>:GetWord = fr o n t(q q)

K7: (SBq, qq) < S Bq,qq>; Get Word = < S Bq,rem ove(qq)>

K8: (SBq ,qq) < S Bq, qq>:LineLen = qlen(Qq)

K9: (SBq, qq) kw icin (SBq, qq, 0) — SBq

K10: (SBq,qnqi Nnat) k w icin (S Bq, qnq, Nnat -f- l) —

sadd(kw icin(S8q, r o t a t e l (q q), Nnat), r o ta te l (q q))

K11: (qnq) r o ta te l (q nq) = add(remov6(qnq) ,fr o n t(q nq))

www.manaraa.com

Chapter 4. Classified Model Situational Logic 59

GetLine and RemoveLine of the previous chapter can be combined as the new

GetLine shown here. Also GetWord and RemoveWord can be combined in the same

way as a stack operation pop that both returns a value and changes the stack.

All of the return values in this example are singletons, but a tuple (not the state

tuple) could be returned, corresponding to several return values of a procedure. In

the CM language the tupling operation can be overloaded just by using it in more

then one context. Note that the above specification mixes the infix and situational

forms because they are both within the CM language. Specifically, note, that the

production and return functions are both polymorphic and incompletely defined

(although in the initial model each unclassified term has a defined meaning

itself). Specifications can also be given in a relativized language that replaces

sorted quantification by sorted antecedents, as in Figure 4.1.

4.1 M odules: A D T W ith S ta tes A s H idden Sorts

Two E-models have the same visible behavior when[MG85][GM82]:

1. They have the same visible, i.e., non-hidden, sorts;

2. Any E-term of visible sort evaluates to the same value in each model.

An ADT specification can be considered a module specification once we dis

tinguish which sorts have hidden representations. We can then construct initial

and final [Wan79] realizations (models) of a specification as well as others inter

mediate to these. For example, the module specification of figure 4.1 with hidden

sort c r t specifies a module which counts the number of characters (sort chr) ever

presented by operation in . The count is accessible via operation ou t. Assume

both the theory of characters (chr) and the theory of natural numbers (n a t) are

also available.

www.manaraa.com

Chapter 4. Classified Model Situational Logic 60

c n t (n i l)
(S,X) cnt(S), chr(X) —>■ cnt(in(X , S))

out (n i l) = 0
(S,X) cnt(S), chr(X) —» out(in(X , S)) = o u t(s) + 1

Figure 4.1: CM Specification Of A Character Counting Module

In general[MC85] :

1. Data types are E-models.

Machines have internal states.

2. Abstract data types describe values (immutable) and their operations.

Abstract machines describe software modules (mutable) and their opera

tions.

3. Abstract machines are S-models, w ith sorts partitioned as:

(a) visible sorts which exhibit the observable behavior by evaluation of

expressions of visible sort;

(b) internal sorts (states) which are hidden from observation by a prohibi

tion on evaluation of expressions of internal sort.

4. Two abstract data types are equivalent iff they are isomorphic E-models.

Two abstract machines are equivalent iff they have the same behavior (i.e.,

EXP operations return the same values), but they might not be isomorphic

as data types because they have different state sorts.

'I uis means that for modules the meaning (intended model) of the specification

includes for the visiole sorts the members of the initial model and for the state

www.manaraa.com

Chapter 4. Classified Model Situational Logic 01

sort(s) the members of any suitable model. This gives the implementer of a mod

ule the freedom to choose a representation that may be “initial” , “final” (the most

space efficient) or, more likely, an intermediate representation that is a tradeoff

between storage space and computation time. This also makes meaningless dis

cussions regarding which of initial, final sen.antics or something intermediate to

these is more appropriate for module implementations since they all have the same

visible behavior.

4.2 A s itu a tio n a l/A D T Translation

The relationship between a module specification in the situational form and

a (renamed) ADT form module specification is summarized in figure 4.2 (quanti

fiers are om itted for space reasons). The situational module specified is a counting

module th a t returns via operation Out the total number of characters ever pre

sented to the module by the operation In . The ADT form classifies as sort cn t

the set of in terms and associates with o u t the depth of the cnt-classified terms.

The first two columns are a module specification in two different situational forms

tha t can be related by the linkage[MW87b] axioms:

1. S ; In(X) = in(S :X ,S ;X)

2. S :0 u t = o u t(S)

The unary predicate s t classifies the “state” sort representing the terms so,

so ;In (a), so; In (a); In(a) etc. In the ADT form specification cn t classifies

the terms n i l , i n (a ,n i l) , in (in (a ,n i l) ,a) , etc.

The relationship between the single-instance module situational specification

and the ADT form specification is:

www.manaraa.com

Chapter 4. Classified Model Situational Logic 62

Situational form Interm ediate form ADT form
s t (s 0) s t (s 0) cnt (n i l)

s t(S) , chr(X) —*•
st(S ; In(X))

s t(S) , chr(X) —>
st(in(S:X ,S;X))

cn t(S), chr(X) —»
cnt(in (X , S))

so:Qut = 0 out (so) = 0 o u t (n i l) = 0

s t (s) , chr(X) —>
S;In(X):0ut =
S:0ut + 1

s t(S) , chr(X) —>
out(in(S:X , S;X)) =
o u t(S)+ 1

cn t(S), chr(X) —>
out(in(X , S)) =
o u t(s) + i

Figure 4.2: Situational - ADT conversion

1. An ADT with hidden sorts can be considered an abstract machine in which

the states are the cn t terms.

2. The middle column, which can be considered a generalization of the ADT

column, has extra state designators because we cannot assume th a t all terms

are rigid (i.e., S:X designates the same object X in any state) nor tha t the

production function is free of side-effects for non-state objects (i.e., S;X is

the same state as S)[MW87b].

3. The left column is an equivalent form of the middle column in which the

single state term is separated from the fluent, other part of the term , by

using the linkage axioms.

A conclusion that can be drawn is: an imperative program is a fluent term and

the state term is the initial state. This is demonstrated in the chapter 6, Program

Synthesis.

www.manaraa.com

Chapter 4. Classified Model Situational Logic 63

4.3 S itu a tio n a l S tack T h eo ry

The following is a classified model specification (in the relativized language)

for a situational stack single-instance theory.

s t (s 0)

(S,X) st(S),n at(X) -> st(S;Push(X))

(S,X) st(3),n a t(X) -> S;Push(X);Pop = S

(S,X) st(S),n at(X) -> S; Push(X):Top = X

An extension of the situational stack specification comprises the linkage axioms

for converting between the situational and (relativized) ADT form.

(S,X) st(S),n at(X) -► S; Push(X) = push(X, S)

(S, X) st(S),n at(X) —> S; Pop = pop(S)

(S,X) st(S),n at(X) —> S;Push(X):Top = top(push(X, S))

A multiple instance stack specification distinguishes among several instances

of the type-of-interest object, which could be introduced by declaration assertions

as shown in the first two assertions below. These assertions declare names for two

different stacks called a and b, which are distinguished from the initial, joint state

so of both stacks.

stk(a)

stk(b)

s t (s 0)

(W,S,X) st(W), stk (S),nat(X) st(W; Push(S,X))

(W,S,X) st(W), stk (S),nat(X) —* W;Push(S,X);Pop(S) W

(W,S,X) st(W), stk (S),nat(X) —> W; Push(S, X):Top(S) X

www.manaraa.com

Chapter 4. Classified Model Situational Logic 64

Frame axioms such as the first two below are given explicitly for each of the

finite number of stacks under consideration. These are given explicitly ju s t this

time and are assun ed in subsequent examples. The Top function is usually as

sumed to be side-effect free, as shown in the th ird axiom. The Pop function can

be specified to have a return value by the fourth axiom, although this isn’t neces

sary when a separate Top function is given. By using the production and return

functions we can specify a Pop that both returns a value and has an effect.

(W,S,X) st(W),nat(X) —> W;Push(a,X);Pop(b) = W; Pop(b);Push(a,X)

(W, S,X) 3t(W),nat(X) —> W;Push(b,X);Pop(a) = W;Pop(a);Push(b,X)

(W,S,X) st(W), stk(S),nat(X) -+ W;Top(S) = W

(W,S,X) st(W), stk(S),nat(X) -> W;Push(S,X):Pop(S) = X

4.4 R elated W ork

Goguen and Meseguer describe FOOPLog[GM87c] which combines, and de

rives its name from, equational logic (a functional part), object-oriented modules

(the OOP part) and Horn logic (the Log part). The semantics of the object-

oriented part is call ’’reflective semantics” .

Trace theory, originally described by Bartussak and Parnas[PB78], is a full

first order axiomatic theory, about “traces” , or sequences of symbols th a t repre

sent imperative programming language function and procedure calls having value

parameters. The relationship between trace theory and classified model situa

tional logic is noted after a brief description of trace theory.

In trace theory, program calls from a defined set are concatenated to form

a trace which represents an execution history of the corresponding functions and

procedures. Also included among the traces are the calls (sequences of length one),

www.manaraa.com

Chapter 4. Classified Model Situational Logic l>5

Signature:
push(char)
pop
to p —> char

A x i o m s :

(T,Xchar) L(T) -> L(T.push(Xchlu:))
(T) L(T.tcp) «-> L(T.pop)

(T, Xchax) T.push(Xchax) .pop = T
(T) L(T.top) -h. (T.top = T)

(T,Xchai) L(T) - » V (T . p U S h (X c h a r) - t o p) - Xchar

Figure 4.3: Trace Specification - Unbounded Stack

and the empty trace, which is not considered a call. Not necessarily all possible

traces match the intended set of sequential function and procedure execution

histories, so a subset of “legal” traces is characterized by a unary predicate “L”.

Similarly, only programming language functions return a value, so a unary partial

function “V” is defined on traces having a function call suffix to designate the

value returned by the function call after various traces.

For _xample[PB78], an unbounded stack of character module has procedure

and function calls with the syntax section shown in figure 4.3. The syntax section

is information for the programmer and has no semantic counterpart like the syntax

section of the MSA and related techniques, i.e., it does not define the carriers of

a data type.

The axioms are in a sorted full first order logic with the convention that the

variable “T” is of sort trace, the symbol is a polymorphic infix trace (or call)

concatenation function yielding a new trace. T hat is, traces, including calls and

the empty trace, form a monoid with the concatenation operation and empty trace

identity.

www.manaraa.com

Chapter 4. Classified Model Situational Logic 66

The correspondence between trace theory and classified model situational logic

is:

• The “trace” sort corresponds to the classified sort “state”.

• The “L” predicote assertions for trace legality corresponds to the CM dec

laration assertions defining the CM state sort.

• The trace “V” function corresponds to the the situational CM return func

tion

• The trace “.” concatenation function corresponds to the situational CM

production function

As described in the introductory chapter, the CM restriction to Horn formulas

is not a constraint on the power of a specification language if we are interested in

theories which admit initial models. Recall th a t initial term models are generated

(every element of the domain has a name) and generic (any other model is a special

case of a generic model). Thus, if we are interested in specification of modules

having initial term models then we do not need a full first order logi .

4.5 Sum m ary

In summary, the situational form of a specification such as a stack is a legal

CM specification which has an advantage over the ADT form of specification,

namely separating state terms from fluent terms. This separation allows inde

pendent consideration of the state, or mutable, part of a specification from the

immutable part, which in the case of multiple instance specifications includes in

stance identifiers. Subsequent chapters showing applications of CM specifications

use the separation to justify a Hoare logic which generalizes from simple variables

www.manaraa.com

Chapter 4. Classified Model Situational Logic 67

to modules and a synthesis technique for generating an implementation of a pro

gram from its specification and the specification of modules which are to be used

in the implementation.

www.manaraa.com

C h ap ter 5

S ituational H oare Logic

The program verification method of Hoare is a well-known technique for prov

ing the partial correctness of simple im perative programs. Unfortunately, the

method does not scale-up well to include all combinations of features commonly

found in practical imperative languages [Apt81]. A safe language subset includes

the basic control operations of selection, repetition and sequential execution of

program statements as well as the s ta te changing assignment statem ent. Many

of he problems with the basic m ethod are rooted in the use of procedures with

return values and with the unrestricted use of functions[ACH76].

The Hoare calculus is obtained from the earlier m ethod of Floyd[Flo67] by

restricting transfer of control to the above control structures and by eliminating

the “goto” statem ent. In a similar way, some of the procedure and function

problems of the Hoare method may be overcome by restricting the use of procedure

and function calls to those defined in a classified model specification. Although

this might seem too restrictive, just as the elimination of the goto statem ent was

once viewed as radical, the software engineering technique described later supports

ju s t this style of programming.

A simple example of program verification by Hoare’s method is used to demon

strate the standard technique for ordinary integer variables. Following this, the

same example is used to demonstrate th e extended Hoare method when the vari

ables are specified by situational classified model assertions.

68

www.manaraa.com

Chapter 5. Situational Hoare Logic 69

An example based on a CM situational stack theory is used to demonstrate the

extension of Hoare logic for use with modules. This example is also used in the

next chapter to illustrate the synthesis of programs from module specifications.

5.1 T he B asic H o a re M e th o d

The Hoare method of program verification consists of a logic and a calculus in

which we can state propositions about the partial correctness of while programs,

i.e., programs using the control structures described above in a safe language

subset. A Hoare triple is an expression {P} S {Q} where P and Q are open formulas

of first-order logic and S is a while program. It is assumed that the reader has some

understanding of the Hoare m ethod of program verification, e.g., P represents a

pre-condition and Q represents a post-condition. The Hoare calculus includes the

following set of inference rules for deriving triples.

A ss ig n m en t: {Pl/x} x: = t {P}.

If the property P is true after execution of the assignment, then before the

assignment the property P, w ith x replaced by t, is true.

C o m p o sitio n : If the triples { P } S i {R} and {R} S2 {Q} are derivable then the

triple {P} Si; S2 {Q} is derivable.

If the first statement has a post-condition th a t matches the pre-condition

of the second statem ent, then the composition of the statements by the

statem ent separator has the precondition of the first statement and the

post-condition of the second.

C o n d itio n a l: If the triples {P A E} Si {Q} and {P A ->E} S2 {Q} are derivable,

then the triple {P} if E then Si else S2 fi {Q} is derivable.

www.manaraa.com

Chapter 5. Situational Hoare Logic 70

W hile : If the triple {P A E} S {P} is derivable, then the triple {P} while E do S

od {P A ~iE} is derivable.

If the loop invariant P is maintained by the loop body S, then the loop

with precondition P has a post-condition tha t is the conjunction of the

invariant and the negation of the loop condition E. Loop termination is

proved separately.

C onsequence: If the first-order formula P —> Q is derivable, the triple {Q} S {R}

is derivable and the formula R —> T is derivable, then the triple {P} S {T}

is derivable.

5.2 A Sim ple Situational E xam ple

The example program fragment in figure 5.1 is intended to reduce the value

of the variable d to the (lesser or equal) value stored in the variable b. The

verification shows tha t the program accomplishes this and the commentary on

the right side of each assertion gives a short justification for each proof step in

terms of the basic Hoare rules. This is a very simple program which is included

simply to demonstrate the technique.

Since the loop invariant is asserted before the loop and is maintained by the

loop body we can conclude (according to the while rule) the loop post-condition

and the subsequent final simplification stating the desired result.

The details for the derivation within the loop are given in figure 5.2. A vari

ation on the usual assignment rule is th a t the post-condition is transformed to

the pre-condition by replacing every occurrence of the variable changed by the

state changing operation d ec (d). This is equivalent to the usual rule in which

the variable modified is replaced in the post-condition by the right hand side of

www.manaraa.com

Chapter 5. Situational Hoare Logic 71

{b < d} loop invariant
WHILE b ^ d DO

{b<d A b ^d } see details below
dec(d) equivalent to d := d-1
{b<d} desired loop invariant

END
{b < d A b=d} by while rule
{b=d} simplification

Figure 5.1: While Program Hoare Verification - Integer Case

{b<d A b ^d}
{b<d} simplification of above
{b<dec(d)} property of decrement function
dec(d)
{b<d} desired loop invariant

Figure 5.2: Loop Body Hoare Verification - Integer Case

an assignment. The steps from the first to the th ird assertion are by common

simplifications of arithmetic, where the value of dec(d) is the same as d - i .

The derivation above uses an informal notion of variable and an implicit theory

of natural numbers stored in the variables. These can be made more explicit by

writing the situational classified model assertions of n a t for the values stored and

the classified model specification of figure 5.3 for the two identifiers b and d which

represent separate variables of sort c a rd (for cardinal). The card assertions are

for a multiple-instance module which supports the storage of natural numbers.

Assertion C5 states that zero is stored for each identifier in the initial state s.

Assertion C6 states tha t after incrementing C the value of C is the successor of its

value in the state W. Implicit frame axioms for each identifier ensure that separate

variables do not interact. Axioms for the ordering relations < and < can be

www.manaraa.com

Chapter 5. Situational Hoare Logic 72

Cl: card(b)
02: card(d)
C3: st. (s)
04: (W, C) st(W), card(C) -» st(W; inc(C))
05: (C) card(C) —> s:C = 0
06: (W,C) st(W), card(C) -* W;inc(C):C = s((W:G))
07: (W,C) st(W), card(C) —> W; inc(C); dec(C) = W

Figure 5.3: Axioms For card Variables

{W:b < W:d} loop invariant
WHILE b^d DO

{W:b<W;d A W:b^W:d} see details below
dec(d) equivalent to d := d-1
{W:b<W:d} desired loop invariant

END
{W:b<W:d A W:b=W:d} by while rule
{W:b=W:d} simplification

Figure 5.4: While Program Hoare Verification - Situational Integer Case

obtained from the corresponding axioms for n a t.

The extended verification of figure 5.4 is similar to the earlier example of figure

5.1 eoccept tha t each occurrence of a variable name in an assertion is replaced with

an expression denoting the value of tha t variable identifier in a specific state W.

This makes explicit the state changing nature of some operations, e.g., assignment.

The main difference between the basic and extended Hoare techniques is in the

treatm ent of state changing commands (e.g., assignment). The effect o f a s ta te

changing co m m a n d such as d ec(d) is recorded by fo rm in g a pre-condition f r o m

the p os t-con d it ion by replacing every occurrence o f the s ta te variable W with the

new sta te W ;dec(d). This is given by an assignment rule generalization tha t can

be applied to any operation S that changes a state W:

www.manaraa.com

Chapter 5. Situational Hoare Logic

{W:b<V:d A W:b ^ W:d}
{W:b<W:d}
{W:b<W;dec(d):d}
dec(d)
{W:b<W:d}

simplification of above
derived property of dec fen

desired loop invariant

Figure 5.5: Loop Body Hoare Verification - Situational Integer Case

51 s tk (b)
52 s tk (d)
53 s t (s)
54 (W,S) st(W), stk (S) -► st(W ;push(S))
55 (W,S,X) st(W),stk(S),nat(X) W;push(C, X):top(C) = X
56 (W,S,X) st(W), stk(S) -> W;push(C,X);pop(C) = W

Figure 5.6: Axioms For s tk Variables

S ta te C h an g e |PW;S/w}. S{P}.

If the property P is true after execution of the state changing operation S

then before the operation the property P, with W replaced by W;S, is true.

5.3 A S itu a tio n a l S tack H o a re V erifica tio n

The stack example of figure 5.6 is similar to the above c a rd example, except

the underlying classified model specification is a multiple-instance s ta c k -o f -n a t

module. The ca rd module could have been named s to r e - o f - n a t to emphasize

the similarity. The frame axioms are implicit. There is an analogy between in c

and push, between dec and pop, and between the ca rd vaiiable name and the

to p applied to each s tk variable name.

The verification is for a program that reduces a given stack d to equal a

substack b, where each value in the stack d is distinct. It is analogous to the

www.manaraa.com

dhaptcr F). Situational Hoare Logic 74

{W:b < W:d} loop invariant
WHILE to p (b)^ to p (d) DO

{W:b<W:d A W :top(b)^W :top(d)} see details below
pop(d)
{W:b<W:d} desired loop invariant

END
{W:b<W:d A W :top(b)=W :top(d)} by while rule
{W:b=W:d} simplification

Figure 5.7: While Program Hoare Verification - Stack Case

{W:b<W:d A W:top(b) ^ W:top(d)}
{W:b<W:d} by a stack theorem
{W:b<W;pop(d);d} by a stack theorem
p o p (d)
{W:b<W:d} desired loop invariant

Figure 5.8: Loop Eody Hoare Verification - Stack Case

previous programs which reduced a given variable d to equal another (less than or

equal) variable b. The verification is based upon several stack theorems, which can

be derived from the above stack module specification, and assertions for substack

ordering relations, which can be derived from the corresponding relations for n a t.

The stack theorems are dealt with explicitly in the similar example of the next

chapter. The while loop derivation of figure 5.7 is similar to the previous cases.

The details in figure 5.8 of the verification th a t the body of the loop m aintains

the loop invariant are similar to the corresponding versions for the c a rd program.

An advantage of the situational approach is tha t various states of the com

putation can be given explicitly instead of by some arbitrary convention. For

example, it is usual in Hoare logic to refer to the value of a variable x before

some state changing operation by a “ghost” variable in the form of some textually

www.manaraa.com

n hapter 5. Situational Hoare Logic

distinguished name such as x J . This is unnecessary when states are explicit since

the value of x before a state changing operation S is W:x and after the operation

the value is W; S : x.

5.4 Sum m ary

It has been shown that Hoare’s method can be extended to include modules

as “big variables” . The motivation rests in the software engineering technique,

described in Chapter 7, tha t shows how to design programs tha t are limited to

procedures and functions defined by classified model specifications.

www.manaraa.com

C hapter 6

Program Synthesis

The synthesis of a program can occur as a side-effect of the proof of a specifica

tion theorem using a technique of M anna and Waldinger[MW87b]. They published

full first-order axioms describing a “blocks world'” and synthesized an imperative

program to clear a given block of any covering blocks. However, to ensure tha t

there is no movement of blocks beneath the target block to clear, their synthesis

required one manual step to strengthen the theorem to prove. In this chapter,

however, no strengthening is required since no movement of covered blocks can

occur when the blocks are represented as a stack of blocks and the block to clear

of covering blocks is modeled as the top of a substack. No strengthening is re

quired because a stack module provides no operations to access any block below

the current top block.

6.1 A B locks-w orld Synthesis

A multiple-instance stack-of-block module, like the stack-of-nat module of the

previous chapter, is used below with the sub-stack relation “less than or equal to”

(<) and the weli-four.ded strict sub-stack relation1 “less th an ” (<).

The program derivation uses the M anna and Waldinger[MW89] tableau tech

nique: a full first-order, non-clausal resolution method th a t generalizes refutation

1A well-founded relation has no infinite decreasing sequences.

76

www.manaraa.com

Chapter 6. Program Synthesis

techniques. It has also been autom ated and includes induction. For readers unfa

miliar with the details of the technique, each step is paraphrased below. A Horn

formula restriction in the assertions of a CM specification ensures the existence

of an initial model, but because Horn with equality is a liberal institution, as

noted in the introductory chapter, there is no such restriction in derii'ation with

CM specifications in a full first-order language logical formalism such as that of

M anna and Waldinger. Assertions in either the Assert or Coal columns in any

tableau can be moved to the other column by negating the assertion. A refutation

technique results if all goal assertions are moved to the Assert column in this way.

In the derivation, which starts in figure 6.1, all classification assertions of

these relativized formulas are om itted for brevity, but the same program would

be derived if they were included. The sub-stack s :b of blocks to be exposed is

related to the initial stack s :d by the the sub-stack relation < mentioned above.

Each element of the stack s :d is distinct.

The goal assertion G l in figure 6.1 states that we must modify the stack d by

deriving some fluent Zi which causes some object a to be on top; we assume a

is to p (b) . The antecedent of the goal states that b is a non-empty sub-stack of

d. The consequent of the goal states tha t in the initial state s the top of stack

b equals the final state s;Z i value of the top of stack d. The derivation task is

to find a fluent expression (a program) c l r in the “Prog” column. During the

derivation the program must be “suitable” for the goal, i.e., the term s;Z j must

satisfy the goal assertion. This property is maintained by the rules as the fluent

term in the “Prog” column is altered according to the rule of inference invoked at

each step. Line A2 is the result of applying a well-founded induction rule to goal

G l. The assertion says that the desired result is true for all stacks less than d,

where capitalized symbols represent variables.

www.manaraa.com

('hupter 6. Program ,Synthesis 78

Label Assert Goal Prog Rule

G l (s : n i l < s:b A s:b < s:d) —►
s:to p (b) = s ;Z r:to p (d)

s;Z t

A2 W:U < s:d
(s : n i l < s:b A s:b < W:U) —>
W:top(b) — W; c lr:to p (U)

induct
G l

Figure 6.1: Synthesis Step 1: Well-founded induction statem ent

Label Assert Goal Prog Rule

A3 s : n i l < s:b if-split G l
A4 s:b < s:d
G5 s:to p (b) = s :Z i:to p (d) s ;2 i
L16 s; Z2 :d < s :d A s; Z2; c l r res G5,A2

s : n i l < s:b A W e-- s ;Z 2
s:b < s; Z2:d A U d
s :to p (b) = s ;Z 2 :top (b) Zi t— Z2 ; c l r

Figure 6.2: Synthesis Step 2: Well-founded indv--+:en application

The verification (synthesis) continues in figure 6.2 w ith a split of goal G l into

assumptions A3,A4 and goal G5. Goal G5 and the induction assumption A2

resolve except for the terms W:top(b) and s:top (b), but this can be handled by

including the equality of these two term s (after the substitution) as a conjunct

in the new goal G6. It is the use of induction th a t results in the introduction of

(tail) recursion, as demonstrated by the introduction of ; c l r at the end of the

“Prog” column term that represents the program c l r .

Assumptions A7 and A9 are theorems that can be proved by induction from

the stack specification. These represent some of our common working assumptions

about stacks. A7 of figure 6.3 states th a t pop-ing a non-nil stack tf:U results in

a sub-stack of the original stack. Step G8 in figure 6.3 is produced by resolution

www.manaraa.com

Chapter 6. Program Synthesis 79

Label Assert Goal Prog ! Ride j
A7 s :n i l < W:U —>

W;pop(U):U < W:U
theorem

G8 s :n i l < s:d A
s :n i l < s:b A
s:b < s;pop(d):d A
s:top(b) =
s;pop(d):top(b)

s ;p °p (d) ;c l r res G6,A7
Z2 < pop(d)
U < d
W < s

Figure 6.3: Synthesis Step 3: pop less than theorem

Label Assert Goal Prog Rule
A9 s:b < W:U -»

s:b < W;pop(U):U
theorem

G10 s :n i l < s:d A
s :n i l < s:b A
s:b < s:d

s ;p o p (d) ; c l r res G8,A9
W *- s
U <— d

Figure 6.4: Synthesis Step 4: pop less than or equal theorem

and A7 and results in a fluent term pop(d) ; c l r in the program to derive,

fundamental step in the derivation and it demonstrates that the common

Tions in programming are based upon derived results such as A7 rather than

the axioms of the specifications. The final conjunct of G8 is an instance of a frame

axiom asserting that state-changing operations of different stacks do not interfere.

For brevity, frame axioms are applied autom atically during resolution.

A9 in figure 6.4 states that if a given stack s :b is strictly less than another

stack W :U, then s :b is less than or equal to the result of pop-ing W :U. Application

of this theorem simplifies the goal, as shown in G10.

Figure 6.5 applies a transitivity axiom A9 to reduce the goal.

In figure 6.6 a stack theorem states that a sub-stack having a different top

www.manaraa.com

Chapter 6. Program Synthesis 80

Label Assert Goal Prog Rule

A ll (W:Si < W:S2A
W:S2 < W:S3) -»

W:Si < W:S3

stack axiom

G12 s : n i l < s:b A
s:b < s:d

s ;p o p (d) ; c l r res G10,A11
W <- s
Sj <— n i l
52 <— b
53 <- d

G13 s:b < s:d s ;p o p (d) ; c l r res G12,A3

Figure 6.5: Synthesis Step 5: transitivity axiom

Label Assert Goal Prog Rule
A14 s:b < W:U A

-'(W:top(b) =
W:top(U)) —»

s:b < W:U

theorem

G15 s:b < s:d A
->(s:top(b) = s:top(d))

s ;p o p (d) ; c lr res G13,A14
W <- s
U <- d

Figure 6.6: Synthesis Step 6: non-equal top

than the super-stack must be strictly less than the super-stack. This is used to

in trodu.e into the derivation a term that will appear in the program in the final

step.

The final step of the derivation produces the recursive program c l r , which, due

to its “linear” form, can be easily converted to an equivalent iterative form[MW87b].

A is a fluent having no effect.

www.manaraa.com

Chapter 6. Program Synthesis 81

Label Assert Goal Prog Rule

G16 -■(s:top(b) = s :to p (d)) s ; p o p (d) ; c l r res G15,A4
res (15, (116
Zj < A

G17 true s ; i f to p (b) = to p (d)
th e n A
e l s e p o p (d) ; c l r

Figure 6.7: Synthesis Step 7: recursion introduction

6.2 M odule Im plem entation M od els

M athematical models of a set of assertions of a specification can be constructed

by (1) choosing a representation for the objects of the universe and (2) choosing

functions which satisfy the specification, i.e., in a CM specification we can substi

tu te for each classified term its representative in the model and for each function

symbol the chosen actual function.

Actual functions, i.e., fluents representing module implementations, can be

derived by the Manna-Waldinger program synthesis method, by (1) choosing a

situational term in some implementation representation for each classified term

and (2) deriving an actual function th a t satisfies all specification assertions that

include the function.

For example, we can implement a “table list” module in this way. The single

instance table-list module specified in figure 6.2 extends a stack (read the table-list

operations i n s e r t , d e le te , c u r r e n t as push , pop, to p) in two stages:

1. A traversing stack extends a stack by allowing read access to any stored

elements of the stack (via a “current” position), but no capability to change

the traversing stack except by the usual stack operations.

2. A table-list module additionally allows new elements to be inserted and

www.manaraa.com

(Jimpter 6. Program Synthesis 82

T1 s t (s)
T2 (W, A) st(W), chr(A) —> st(W; in ser t(A))
T3 (W, A) st(W), chr(A) —> tf; in ser t(A); d e le t e = W
T4 (W, A) st(W), chr(A) —> W; in s e r t (A) .'current = W:A
T5 (W,A) st(W),chr(A) —> st(W; in sert(A); g o le f t)
T6 (W, A) st(W), chr(A) —► tf; in ser t(A); in sert(B); g o le f t =

tf; in se r t(B); g o le f t ; in sert(A)
T7 (W, A) st(W), chr(A) —> tf; in ser t(A); g o le f t ; g o r ig h t = W; in sert(A)

Figure 6.8: Table-List CM Specification

deleted at the “current” position in a traversing stack.

We can implement the table-list by (1) choosing as representation two stack

modules, 1 (left) and r (right), such th a t

1. W ;insert(X) is represented by W ;push(l,X)

2. W; in se rt(X); g o le f t is represented by W;push(r,X)

and (2) deriving the implementation of d e le te , also shown below. Note tha t

each actual function of the “im plem entation model” can be derived in this way

independently of the derivation of each other actual function.

Goal G l of the implementation derivation in figure 6.2 consists of the d e le te

axiom T3 in which we have substituted the stack representation for the classified

term and a variable T for the situational term d e le t e , i.e., program, to derive.

Goal G3 is the result of resolution between G l and A2, an axiom in the

multiple-instance stack specification, w ith the substitutions shown. The result

program p o p (l) is an implementation for delete in the proposed model.

www.manaraa.com

Chapter 6. Program Synthesis 83

Label Assert Goal Prog Rule 1
G l w ;push(l, a);T = w T
A2 W;push(S,X);pop(S) = W Axiom
G3 true p o p (l) res Gl,A2

S «- 1
Xe a
T *- pop(l)
W - w

Figure 6.9: Table-List d e le te derivation

6.3 R ela ted W ork

M anna and Waldinger have developed program synthesis techniques for ap

plicative programs[MW87c] and im perative programs[MW87b][MW87a] based on

their deductive techniques[MW89][MW86]. They have also investigated impera

tive languages from a situational viewpoint[MW81], but did not apply their tech

niques to the verification of programs calling modules.

6.4 Sum m ary

This chapter is a simple application of Manna and Waldinger’s imperative

program synthesis, with one exception: they[MW87b] use assertions expressed in

a full first-order language. In contrast, the classified model specification assertions

used in this chapter are restricted to a Horn-with-equality subset of full first-order

logic, although the derivations are not restricted to this language subset. The stack

representation for the blocks problem solved a difficulty experienced by Manna

and Waldinger: with their full first-order axioms they could not complete the

synthesis without “strengthening” [MW87b] the theorem to prove in some manual

way. No such strengthening is required in the synthesis of this chapter. This

www.manaraa.com

(Jhapter 6. Program Synthesis 84

improvement appears to be due to the choice of axioms that ensure an initial

term model.

This chapter is also a dem onstration of an application of the situational CM

language.

www.manaraa.com

C hapter 7

A Software E ngin eering Technique

The software engineering technique presented in this chapter uses the spec

ification concepts of the previous chapters to write in a common notation both

behavior requirement and implementation design specifications. The first type of

specification is the result of a problem analysis process that documents what is

required of software without regard to how it is implemented. The second is a

plan for an implementation th a t has the behavior prescribed by the first, but also

addresses issues of implementation and ongoing maintenance.

For example, the kwic CM specification given earlier is a requirements speci

fication because it defines the required behavior but it does not directly address

implementation issues. Note th a t although kwic is expressed in terms of parame

terized SQUEUE and QUEUE, the behavior of the module specification as described by

the export interface is independent of these submodules. Sometimes the distinc

tion between requirement and design specification is blurred with executable spec

ifications because the specification is an implementation (0BJ[FGM 0ft7]), but not

the only possible implementation. Even if the behavior requirements specification

is executable, it may not be the best form of implementation because there may

be another implementation th a t executes faster (e.g., an imperative program - i

is more modifiable.

A kwic implementation specification for modules that are more mod' 1 >I<- -

given by Parnas[Par72b], although he also allows random access to t* 1 jtput.

85

www.manaraa.com

Chapter 7. A Software Engineering Technique 86

lines and considers characters, not words to be atomic. The main difference be

tween the kwic requirements specification of this dissertation and Parnas’ design

specification is that he decomposes the problem with future maintainability in

mind. Instead of describing the problem in terms of the convenient (off-the-shelf)

SORTING-QJJEUE-OF-LINE and QUEUE-OF-WORD parameterized specifications Par

nas selects modules:

L ine H o ld e r stores all input lines. Each line is entered sequentially but can be

accessed randomly by indexing to a line and a word within a line. Future

maintainability is enhanced by hiding within this module all issues related

to storage of data.

C irc u la r S h if te r is responsible for producing all circular shifts of all stored data.

Future maintainability is enhanced by hiding within this module all issues

related to the algorithm for producing circular shifts, e.g., whether circular

shifts are stored redundantly or computed from the line holder data on

demand.

A lp h a b e tiz e r is responsible for sorting all data. Future maintainability is en

hanced by hiding within this module both the sorting algorithm and the

sorting time, e.g., batch sorting or incremental as required.

The kwic requirements specification of a previous chapter (summarized in fig

ure 7.1) has a module dependency structure in which the kwic specification is

expressed in terms of the param eterized squeue(queue(word)) and queue(word)

specifications. In this decomposition the storage of data is the responsibility of

both queue and sorting queue, the rotation method is tied to the queue and the

sorting algorithm to the sorting queue. This requirements specification does not

www.manaraa.com

Chapter 7. A Software Engineering Technique 87

address the separation of concerns, and future maintainability, that is in the Par-

nas design specification. The kwic reHuiiw.»ents have already been given as a CM

specification and the design specification could also be given as the additional

constraint that the exported operations should be implemented by the modules

Line Holder, Circular Shifter and Alphabetizer. This implementation constraint is

similar to the implementation of the Table-List specification by two stacks, as de

scribed in a previous chapter. The behavior of the specified module is fixed by the

requirements specification, but the means of implementing it can range from the

original requirement specification (if it can be executed) to an imperative (situa

tional) implementation based upon modules such as Line Holder, Circular Shifter

and Alphabetizer. Just as a Table-List module implementation was derived in a

previous chapter from the Table-List axioms and the axioms for an implementa

tion consisting of two stacks, so too can an implementation of the kwic module be

derived from the requirements specification, which describes the desired behavior,

and the axioms for the im plem entation modules Line Holder, Circular Shifter and

Alphabetizer.

Finally, by the results of the previous chapter such an implementation can

be expressed in the CM (situational) language, so that behavior requirements

specification, implementation design specification and an actual implementation

(or model) can all be described in the same CM language if the implementation

is restricted to operations th a t are described by CM specifications.

7.1 The T echnique

A software engineering technique th a t encourages the description of all opera

tions by module specifications could contain the (perhaps overlapping) activities

www.manaraa.com

Chapter 7. A Software Engineering Technique 88

Kwic

1 ISqueue(queue(word)) Queue(word l

Figure 7.1: Kwic Requirements Module Dependency Structure

of analysis, design and implementation.

A n a ly sis is the process of determining the requirements of software and docu

menting these as [Par 84]:

• Specification: a formal system requirements description, as described

in this dissertation. This description prescribes behavior without sug

gesting an implementation.

• Assumptions: issues tha t are likely to remain true throughout the life

of the system.

• Likely changes (or, secrets): issues th a t must be easy to change through

out the life of the system.

• Subsets: portions of the system that can be incrementally implemented.

• O ther issues: Hardware, tim ing and accuracy constraints.

D esig n is the selection of im plem entation module(s), i.e., modules tha t may be

different from those used in the requirements specification to describe the

software under construction. The requirements description need not be de

composed in a way th a t supports the likely changes, but the design decom

position must.

www.manaraa.com

Chapter 7. A Software Engineering Technique 89

Im p le m e n ta tio n is the derivation of programs satisfying the requirements spec

ification and calling implementation modules, which possibly call programs

within other implementation modules.

We can choose to describe system requirements in terms of the modules th a t

we use for the implementation, but this might not be convenient. Conversely, we

can choose to implement a system in term s of modules th a t are convenient for

the requirements description, but this might not be efficiently executed or easily

maintained. For example, the kwic requirements could have been described in

terms of the three modules of Parnas, but these are more complex than the sorting

queue and queue specifications. Conversely, the sorting queue and queue parts of

the kwic requirements specification are convenient, but they do not support the

likely changes to data structure or algorithms.

Corresponding to each step above there are the following software structures1.

A n a ly sis has the module requirements specification structure which is defined by

a set of specification construction operations upon a set of smaller (possibly

standard) specifications, for example by the specification library intercon

nect language LIL[Gog86]. The structure is a partial order between module

specifications tha t are related by their definitional dependency upon other

modules. These definitional dependencies can also be described[Par84] as

the assumptions the writer of one module specification can depend upon in

the other module(s). Except for the need for certain sub-modules common

to several super-modules, the structure could be hierarchical. An example

of such a structure is the dependency of the kwic specification upon the

parameterized specifications for SQUEUE and QUEUE.

1 Structure is defined as a set of objects and a relation among the objects

www.manaraa.com

Chapter 7. A Software Ergineering Technique 90

D esign has the module work assignment structure[Par84] which defines the work

assignments given to each member of a team of programmers (or automatic

program synthesizers), where the assignments are related by a “is contained

in” relation (hierarchy).

Since a requirements decomposition (e.g., queue and squeue for kwic) can also

be considered a design, albeit not necessarily one tha t supports the identified

changes, it is possible to construct a work assignment structure on the require

ments decomposition. Since the requirements decomposition is not constructed

with the changes in mind, we can expect tha t any work assignment might share

change issues w ith other work assignments and tha t maintainability might not be

an a ttribu te of a.i implementation based upon such a design. For example, the

SQUEUE and QUEUE modules of kwic requirements decomposition share the storage

of data.

Conversely, a design decomposition (e.g., line holder, circular shifter and al-

phabetizer) can also be considered a requirements statem ent, although it might

not be as simple to understand as a decomposition tha t does not take into account

possible changes. Since a design decomposition can consist of specifications that

are defined in terms of other specifications, it can certainly have the definitional

dependency structure.

7.1.1 T he M od u le W ork A ssign m en t Structure

A motivating criteria for work sub-division as a design structure is that the

unit of work assignment can also be the unit of change for system modification.

This is because work that can be described for independent creation as a cohesive

unit is only weakly coupled, via an interface specification, with other such work

www.manaraa.com

Chapter 7. A Software Engineering Technique 91

assignments, hence changes that are not associated with the couplings are inde

pendently applied. This suggests th a t prior to the initial work sub-division we

should partition the design decisions into those tha t can be committed, known as

assumptions or unlikely changes, and design decisions th a t can be deferred, known

as secrets or likely changes. Since we wish to apply this criterion to arbitrarily

large systems and we also wish to achieve work assignments small enough that

they can be discarded at small cost, we must repeat the sub-division process to

achieve an ordering of work assignments based upon the subset relation. When a

work assignment is expressed in this light, its previously deferred decisions are in

turn partitioned into a set tha t must be decided and a set th a t is deferred.

H ow To D iscover M odules

The process of discovering modules can be based upon the criteria described

above for the module work assignment structure. The process for describing mod

ules in terms of other modules can be based upon the module dependency struc

ture. Any module decomposition of a system has both of these module structures.

For example, the kwic decomposition into Line Holder, Circular Shifter and Al-

phabetizer modules has a work assignment structure consisting of those three

modules and a module dependency structure which is determined by the specifi

cation descriptions, as described below.

7.2 E xam ple: Kwic D esign

The Kwic design specification is described in this section with the three de

sign modules described above. This example is small enough to illustrate the

implementation technique, but too small to really show the power of the design

www.manaraa.com

Chapter 7. A Software Engineering Technique !)2

Kwic

Alphabet? zer

Circular Shifter

Line Holder

Line-of-word

Figure 7.2: Kwic Design Module Dependency Structure

structure.

The dependency structure for this decomposition is shown in figure 7.2 and

the work assignment structure is shown in figure 7.3, where each module has its

likely change in parenthesis below.

Kwic

. i n : iLine Holder Circular Shifter Alphabetizer
(Storage Method) (Shift Algorithm) (Sort Algorithm)

Figure 7.3: Kwic Desig,- Module Work Assignment Structure

www.manaraa.com

Chapter 7. A Software Engineering Technique 93

7.2.1 Line H older M odule

The line holder module is specified below in two parts. The first part is a

supporting “line-of-word” ADT in figure 7.4. The second part is the line-holder

in figure 7.5. Since they are similar, both specifications could have been de

fined as specific instances of a parameterized INDEXED-LIST(DAT) module, i.e.,

INDEXED-LIST (WORD) for line-of-word and INDEXED-LIST (LINE) for the line holder.

An INDEXED-LIST (DAT) module provides a list where each entry is indexed by

successively larger natural numbers. This restricts the list to strictly sequential

additions, yet allows random access and removal of list items. A parameterized

module was avoided to not obscure, for this decomposition, the easy comparison

of the module dependency structure, as defined by the specification text, and the

module work assignment structure.

In each specification the basic classified objects are defined inductively by

the first two assertions (L1,L2 of figure 7.4 and H1,H2 of figure 7.5, where the

antecedent in the second assertion of each specification enforces the sequential

insertion restriction. The next two assertions of each specification (L3,L4 and

H3,H4) define a count of the number of objects ever added (not the current number

stored since the LineHolder delete axiom does not adjust these counts). The fifth

assertion in each specification defines a selector operation to “get” the object

added, by index.

The remaining operations (L6-L13) of the line-of-word specification define head

and tail operations which support a r o t l operation to rotate a line by one word.

A partial order on line-of-word is also defined. The final operation (H6) of the line

holder module is the delete-line operation d e l l . There is a definitional dependency

(see figure 7.2) between the line holder and the line-of-word.

www.manaraa.com

Chapter 7. A Software Engineering Technique 94

LI ln (n e w ln) (line base)
L2 (L in, WBd, Jnat) > l^ (L in , a ddw(W„d, Jnat)) (line gen)

L3 new ln:w c = 0 (word count base)
L4 (L in, W„di Jnat) "ini a ddw(Wsd, Jnat):wc = L in:wc -}- 1 (wrd cnt gen)

L5 (LinjWndj Jnatj J nat) L inj addw(WHd, Jnat)'S®^'w('̂ nat) ~
i f Jnat “ Jnat thenW „d e l s e L ln :getw (J(iat) (get word)

L6 (W„d) h ead (n .ev ln ; addw(WHd)) = addw(Wwtl/ (head base)
L7 (Lin,WHd,W'Hd) head(Lin*, addw(WBd); addw(W',d)) =

h e a d (L in; addw(V!„d))
(head gen)

L8 (Wwd) t a i l (n e w ln ; addw(Wwd)) = n ew ln (tail bast)
L9 (L in, «Hd) t a i l (L in i addw(Wsd); addw(W'wd)) =

t a i l (L i n i addw(WBd)); addw(Tf'„d)
(tail generator)

L10 (W„d) rotl(neH ln;addw (M nd)) — n ew ln ; ad d s (W„d)
(L„d,Wwd,W'Bd) r o t l(L in i addw(WBd); addw(W'Bd)) =

t a i l (L i n i addw(WBd); addw(w'Bd)); h ea d (L in; addv(WBd))

(rotate 1 base)
L l l (rot 1 gen)

L12 (L in, L i n , WBd) L in=L in > Lin ^ L lnj WBd) (partial order base)
L13 (L ln,L ln,WBd,W #d) Lin= L lnjWwd^^ wd y

Lin, WBd < L ini W „d

Figure 7.4: Line-of-Word CM Specification

(partial order gen)

7.2.2 C irc u la r S h if te r M o d u le

The circular shifter (figure 7.6) module provides all circular shifts of each line

stored ir. the line holder module. Since the method of generating all shifts is a

secret of this module it is possible that the module stores all shifts or it is possible

that the module generates all circular shifts directly from the data stored in the

line holder. It is only the behavior of the module (i.e., the values returned by the

operations) th a t is prescribed by the specification, so no particular implementation

is prescribed by structuring the specification as described below.

www.manaraa.com

Chapter 7. A Software Engineering Technique 95

HI lb(newlh) (Hi base)
H2 (Slh ,Lln, I n a t) In a t = S ih :lc -» lh (S lh; Lin; a d d l(lnat)() (lh gen)

H3 newlh.Tc = 0 (lc base)
H4 (Sih)binj I n a t) Sxh! bxn5 a d d l(lnat) : lc — Sxh'lc "b 1 (lc gen)

H 5 (S l h , L i n , I n a t 1 I n at > I n a t) Sih;Lin;a d d l(l n a t) :g e t l (l 'nat , ■I n a t) —

i f I n a t = f ' n a t th e n L ln :getw(J ' n a t) e l s e Llh:g e t l (l /nat, J ' n a t) (g e t l i n e)

H 6 (Sihjbxn> i n a t j I n a t) Sxh! b l n ! a d d l (l n a t) ! d e l l (l n a t) =

i f I n a t = I ' n a t th e n S i h e ls e S u , ; d e l l (l ,nat); L ^ ; a d d l(lnat) (delete line)

Figure 7.5: LineHolder CM Specification

51 new lh:sc = 0 (sc base)
52 (Sih} I l n) I n a t) 3xh! L] n ; a d d s (lnat) :s c = Sxh-’sc + 1 (sc gen)

53 (Sih} I*in, I na-t) Slhi bln! addl(Xnat) = X̂K? kin(Sxh) bin} bxn-^c) (addl equiv)

54 k in ((S iil,I .ia,0) = A (kin base)
5 5 (S x h }b x n } I n a t) k in (S x h } b xn) I n a t "i~ i) =

L l n ; adds(Sii:sc);kin(Sxh! b x n , rotl(L xn), I n a t) (k i n g e n)

56 (Sxh) b l n } I n a t) I ^ a t) Sih! b x n ! a d d s (lEat); d e l s (l 'nat) =
i f I n a t = I ' n a t th en Sxh e l s e Sxh! d e l s (l /nat); b l n ; adds(lnat) (delete si)

Figure 7.6: Circular Shifter

The line holder is the basic storage mechanism for the kwic specification and

assertions S3-S5 state that an a d d l (add line) operation is equivalent to a sequence

of adds (add shifted line) operations, i.e., one adds operation for each shifted line

generated by the k in (kwic input) operation. The A symbol is the identity element

of the monoid with fluent objects and the operation The (hidden) operation

k in generates circular shifted lines from the kwic input line. There is a definitional

dependency (see figure 7.2) between this module and the line holder module, but

they are independent in the work assignment structure shown in figure 7.3.

www.manaraa.com

Chapter 7. A Software Engineering Technique 96

A1 (Lin, In*t) newlhmil = newln (max line base)
A2 (Slh,Lxn, Inat) Slh;Lin;a d d s(lnat):ml = (max line generator)

i f Lin > Siniml -thenLine l s e Su,:ml

A3 (Sih,Lin, Inat) Sih;Lin; a d d s (lnat):mi = (max index generator)
i f Lin ^ Sih:ml th e n I nat e l s e Supmi

Figure 7.7: Alphabetizer CM Module

7.2 .3 A lphabetizer M odule

The alphabetizer module (figure 7.7) provides the index, mi, of the alphabet

ically first circular shifted line. This line is returned by the max-line operation

ml. The sorting method and the sort tim e (i.e., sort lines as they are inserted or

only upon request of a max line) are secrets of the module. There is a definitional

dependency between this module and the circular shifter module, but they are

independent in the work assignment structure.

7.3 R ela ted Work

Goguen[Gog90] describes an algebraic approach to refinement in which he

states that a specification is a structured theory and a refinement is a struc

tured theory morphism. A structured theory is a set of specifications that are

arranged in hierarchies and are generic so they can be reused in as many contexts

as possible. Refinements can also be structured because the development of a

large program will generally involve a large number of refinement steps; in partic

ular, we want to be able to parameterize refinements and reuse them, as well as

compose them.

Parnas[Par72a] was the first to state the software engineering technique de

scribed in this chapter. He did not, however, distinguish between requirement

www.manaraa.com

Chapter 7. A Software Engineering Technique 97

and design specifications. Conversely, Goguen[Gog81] and Ehrig[EK81] described

(executable) specifications for the kwic problem, but did not address implemen

tation techniques, such as the Parnas implementation decomposition, that are of

practical value to a maintenance programmer.

Specifying an implementation design as well as the behavioral requirements

also has application in ameliorating the “Mythical man-month” phenomenon

[FPB75] in which adding programmers to a project does not necessarily result

in more productivity. Since the design modules separate issues perhaps better

than requirement modules, it is easier to add programmers by giving each a sep

arate work assignment. This approach is also discussed in [Par71].

Another approach to the distinction between specification and design is that

of [GHW85] where a common specification language has a different associated

design language for each possible implementation language.

A requirements specification technique such as [Hen80] is related to the CM

requirements specification technique since they both describe the value of opera

tions applied to terms of the specification language. In (Hen80] some of the terms

are of sort state, or of sort mode (sets of states), but these can handled within

the CM technique.

7.4 Sum m ary

Requirement and design specifications can both be described by a common

CM specification language. A requirement specification is expressed in terms of

convenient submodules. A design specification constrains the implementation to

a selected set of maintainable submodules such tha t the whole system has the

behavior described by the requirements specification.

www.manaraa.com

Chapter 7. A Software Engineering Technique 98

Any decomposition can have both a dependency structure between the mod

ules and a work assignment structure. The dependency structure records the way

in which each specification is written in terms of other specification(s). This is

different from the work assignment structure which records the inclusion relation

ship of module secrets. Both the requirement and design specifications are CM

module specifications. By the results of the previous chapter, implementations

can also be considered terms of the CM language.

Finally, building systems by connecting off-the-shelf components do»s not

guarantee maintainability - it must be designed and this is the main difference

between requirements and design specifications.

www.manaraa.com

C hap ter 8

C onclusions, C ontrib ution s And Future Research

The main conclusions and contributions that can be drawn from this work and

come possibilities for future research are described below.

8.1 C onclusions A nd C ontributions

The Classified Model (Horn with equality) specification technique has a defined

syntax and semantics which has been formalized as an alternative to Many Sorted

and Order Sorted techniques for the specification of abstract data types (ADTs)

and modules (ADTs with hidden state sorts). The main contribution of this

formalization is th a t a variant of the Order Sorted Model (OSM) rules of inference

can be used within the classified technique and th a t the unclassified, or error terms,

cause no difficulties in practice. T hat is, if an assertion containing just classified

terms is derivable from a normal specification then there is a derivation which

contains just classified terms.

The basic classified method may be called “specification-in-the-small” because

it deals with the construction of individual assertions. “Specification-in-the-large”

is addressed by existing param eterization techniques th a t can be used to glue com

ponent specifications into larger units. Results are cited to support the claim that

Horn with equality is a sufficiently restrictive language to qualify as a “liberal insti

tution” and therefore inherits many existing parameterization techniques. Further

results are cited to support the claim th a t Horn w ith equality is the most general

99

www.manaraa.com

Chapter 8. Conclusions, Contributions And Future Research 100

first-order language that admits initial models. The specification of a small but

often cited example (kwic) in terms of off-the-shelf specifications is offered as as

an example of specification-in-the-large.

A situational logic is defined within the classified framework and it is shown

how this can be used to define modules by isolating the hidden state terms. The

kwic example is reworked in the situational format so that it is more i. Jable than

the original version because nested terms have been “linearized” by the situational

operations (production) and (return). These operations are shown to have

a relationship to corresponding functions of Parnas’ method of specification by

trace assertions[PB78].

The situational form of the classified method finds application in a general

ization of Hoare logic that is “safe” for imperative programs which restrict their

use of procedures and functions to the calls of a module specified by the classified

method.

Another application of the classified situational logic is in the synthesis of

programs according to the M anna and Waldinger technique[MW87b|. An example

is given of a blocks-world synthesis which is simpler than a published synthesis

by M anna and Waldinger of the same problem. The simplification is perhaps due

to the use of axioms having an initial model. Also, a synthesis is given for the

implementation of one operation for a “table-list” module in terms of two stack

modules. One feature of this synthesis is tha t each operation of the table-list

module can be derived independently of the others since they are all related by

the specification.

A software engineering technique supports the use of the classified techniques

for either requirements (what to do) or design (how to do it) specifications. The

design specification could be considered an implementation representation of the

www.manaraa.com

Chapter 8. Conclusions, Contributions A nd Future Research 101

requirements and programs could be synthesized according to the method de

scribed for the table-list example. It is shown how requirement specifications

differ from design specifications and how design specifications support program

maintenance.

In summary, this work presents a specification technique and. some of its prac

tical applications.

8 . 2 F u tu re W o rk

The main motivation of this work has been to develop the classified approach

as a specification and derivation technique. It should be a straight-forward task to

apply the M anna and Waldinger derivation checker to these hand-crafted deriva

tions in the program synthesis problem. A more challenging task is to use a proof

guidance system such as M anna and W aldinger’s to derive these proofs.

In the synthesis of programs we produce situational logic terms (fluents) that

can be considered imperative programs. Future work could show tha t the syn

thesized term can be considered a term of a logic with a reduced set of rules

of inference and options (i.e. possible substitutions) for each rule. T hat is, the

synthesized situational term is executed under a single, simple rule of inference

tha t corresponds to sequential execution of subterms in a left-to-right order, with

recursion and if-then-else.

A simpler way to execute programs of classified logic is to encode them in an

OSA language such as OBJ3. As described earlier, the classified technique leaves

to the implementor of a particular language such as OBJ3 the choice of strength

for the type checking system. This encoding corresponds to a prototyping system

and OBJ3 is already used this way, although with component specifications that

www.manaraa.com

Chapter 8. Conclusions, Contributions And Future Research 102

correspond to requirements decompositions rather than design decompositions

(although these could be handled in OBJ3).

More ambitious future work could focus upon the use of classified specifications

in planning applications more sophisticated than the blocks-world application.

www.manaraa.com

A p p en d ix A

Classified H orn Logic W ith E quality

Classified Horn logic with equality is treated formally by giving model and

proof theories for the specification language defined in Chapter 2 , including the

orems for soundness and completeness and the existence of a free model of a

specification.

A .l Free E —term M odel

T heorem 1 (Free E —term M odel) The E - te rm model Tn{X) is a free E-

model over X in the class o f E-models.

Proof: Let the inclusion u :X —> T% (X) (a sorted assignment) be the universal

mapping of definition 17. Let M be a E —model with interpretation a. It must

be shown that for any sorted assignment 8:X —> Dm th a t the extended sorted

assignment 8*: Drs (x) —► Dm is the required unique S —homomorphism such tha t

8 = 8* o u.

103

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 104

r s (x y . "___ X

M

9* satisfies the requirements of a homomorphism (defn 15):

1 . For function symbols, definition 11 for 9* is applied directly.

2. For predicate symbols, there are three cases:

(a) The identity predicate case can be shown easily by structural induction

over terms.

(b) Any sort symbol s has an interpretation in the term model T ^(X) as

the set of variables with th a t subscript. Since #*|XSJ = 0|XsJ and 9 is

a sorted assignment, the condition for a homomorphism is satisfied.

(c) Any other predicate symbol has an em pty tru th set in the term model,

so the condition for a homomorphism is satisfied vacuously.

To show that 9* is the unique S-homomorphism which extends 9, assume there

is another S-homomorphism

7 : D r ^ x) -* Dm

such that 9 = 7 o u. It is shown below by structural induction that 7 ~ 9*.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 105

1 . Base case for variables: 0*[XS] = 0[XsJ = 7 |[XSJ by assumption for all vari

able symbols Xs since 7 extends 6.

2. Induction case: Assume f(to ,. . . , t n_ i) £ D-rs (x) and — 7 p il $OT

i = 0 , . . . , n - 1.

1. defn 15 (homomorphism)

2 . = aslfl(7 lt ll> ••• 57 ttt n]) assumption

3 . = 7 ff(t l> ■ • • j t n)l defn 15 (homomorphism)

A . 2 Q u o tien t M o d e 1

Quotient models are important because they are used in the construction of

a free model of a specification. The following definitions, which support the free

model construction of the next section, are either standard or are minor variations

of standard definitions.

D efin ition 20 (Equivalence relation) A relation R on a set D is called an

equivalence relation on D i f R is reflexive, symmetric and transitive.

D efinition 21 (Congruence R elation) Let E be a signature and M a H-model

with universe Dm and interpretation flmction a , then an equivalence relation R on

Dm, is called a congruence relation i f fo r each di,d'i £ Dm such that (d i,d |) £ R

for 1 < i < 71 the following conditions hold:

1. for each n-ary function symbol f, (a |f j(d 0, • • • 1 dn- i), « |fJ(do ,. . . , d ^)) £

R

2. for each n-ary predicate symbol P,

<d0, . . . , d„_i> € a fP j iff <d'0, . . . ,d 'n_1> £ a [P j

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 106

D efin ition 22 (C ongruence Class) Let E be a signature, M be a E-model and

R be a congruence relation on Dm. A congruence class [a] of R is a subset of

Dm x D m '- [a] = {f> : (h > a) £ R-}

D efin ition 23 (K ernel) Let M and N be E-models and let f: M —* N be a

E-homomorphism. The kernel of f, k e r (f) , is the set

{ (a ,6) : / (a) = /(&)} .

Note that K e r[f) is not necessarily a congruence relation on M , a principle,

difference between this work and the equational case.

D efin ition 24 (Q uotient M odel m/ r) Let M be a E-model with universe Dm

and interpretation function a . Let R be a congruence relation on Dm and let

di G Dm :'or i = 1 , . . . ,n — 1. The quotient model m / r has universe the set of

R-congruence classes and interpretation function (3 such that:

1. fo r each n-ary function sym bolf: / 3 [[f J ([d o] , . . . , [dn-i]) = [a I /] ! (^o> • • • > dn_i)]

2. fo r each n-ary predicate symbol P:

< [d o] , . . . , [4 - i] > € /3JPJ iff <d0, . . . , d n- 1> G affPl

The quotient model is well defined since the relation R is a congruence.

T heorem 2 (U niversal P rop erty O f Q uotients) Let E be a signature, M a

E-model and R a congruence relation on M . Then q: M —> MjR defined by q(a)

[a] fo r a G M is a E —homomorphism (the quotient homomorphism) and satisfies

the following universal property: Let N be a E —model and f : M —♦ N be any

homomorphism such that R C k e r (f) , then there is a unique E-homomorphism

/ ' : m /r —> N such that f = / ' o q.

www.manaraa.com

Appendix A. Clas'-ified Horn Logic W ith Equality 107

N = {Dn , 7)

Proof:

The mapping q is a E —homomorphism since definition 24 satisfies the homo

morphism criteria in definition 15.

To prove the universal property of q define f : M/R —> N by / ;([a]) - / (a)

for all a € M . Uniqueness is easily shown by observing that for any other

E-hom om orphism f " : M/n —> N w ith / = / " 0 q it must be the case that

/"([a]) = / (a) for all a € M .

First, f is well defined:

1 . [a] = [6]

2 . (a, b) E R

3. (a ,b) e k e r (f)

4. /(«) = /(&)

5- /'([«]) = / T O

Assumption

1 , defn 2 2 (congruence class)

2, R C k e r (f)

3, def 23 (kernel)

4, def of / '

Second, / ' is a E —homomorphism. Let a be the interpretation for M , (3 for

m/ r and 7 for N .

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 108

For g an n-ary E —function symbol and [alt;])] G D m ^r for i — 0 , . . . ,n 1

L • • • l/^l^n-ll) = / /(/?[gl([«[to3]i---.[« lt n -ll]) defn of q homo

2 . = / '([a |g l (a | t 0 l , . . . , a j tn .i l)]) defn of q homo

3. = / (a [g] (a [t 0 l , . . . , a [t n_1 l)) defn o f / '

4. = 7 W (/ (a I t o l , . . . , / (a I t n- l l))) / a homo

5. = T lg K / 'M to l l i • • ^ / ' ([“ Itn -ll]))) defn of f

6 - = 7 j g l (W I t o l , - - - » W I t n - l l))) defn of q

For P a n-ary E —predicate symbol and [ajtjj] G D m / r for i = 0 , . . . ,n:

1- <P([to!, • • • ,/3([tn_i]]> € /3[P] assumption

2 . < [a [t0]] , . . . , [a [t n_1]]> € 0 [P] defn of q

3. < a [to l , a | t n_ il> G a|P]j defn of quotient

4. < / (a [t 0 l) , - •. , / (a [t n_ il)> G 7 (P) / a homomorphism

5- • • • >/'([«It n -l]])> € 7 (P) defn of / '

6 - C / W o l) , • • • ,/'(j91[tn-ll)> € 7JP1 defn of q

A .3 P ro o f T heory

The development of this proof theory parallels the Order Sorted Model proof

theory of [GM87b].

A .3.1 E xisten ce Of T he 5 -m o d el TS(X)

The free model for a specification 5 = (S ,T) is based upon a congruence - s

on Z(X)-terms. This congruence is generated by the assertions F and, because

it is based on provability using the rules of inference, results in a simple proof

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 109

of completeness for these rules. This is the same congruence and free model

construction used in [GM87b].

T h e o re m 3 (C o n g ru en ce =$) Let S = (S ,T) be a specification and let t and

t ’ be T.(X)-term sl then the property

t = 5 t' i ff {X) t = t ; is derivable from T -using the rules o f inference

1-5

defines a congruence i lation = 5 on II(X)-term s.

Proof: The first three rules of inference (see Chapter 2) define an equivalence

relation and the fourth ensures th a t the property defines a congruence relation.

D efin ition 25 (Q u otient Term M o d el rs(*)/=s) Let S = (S ,T) be a specifi

cation and let X be the set o f variables in S , then the quotient term model is

W) / s s .

By definition 10 for) and definition 24 for a quotient model, rn{x)j=s has

a universe the set of congruence classes of = 5 and an interpretation function a

such th a t

1 . for the identity predicate symbol:

a | =] = {<d,d> : d is a congruence class of = s }i

2 . any sort predicate symbol s is in terpreted as ju s t the congruence classes of

the sorted variables that have th a t sort subscript, i.e.,

a js j = {[Xs] : Xs is a variable w ith sort subscript s };

3. any other predicate symbol P is in terpreted as the empty set, i.e., a[PJ = {};

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 110

D efin ition 26 (S pecifica tion T e rm M o d e l T s(X)) Let S — (E , T) be a spec

ification and lei X be the set o f variables in S, then the specification term model

T s(X) is just like the quotient term model, except that the interpretation function

a gives an S-model structure fo r each n-ary predicate symbol P in E:

a |P J = { < [to] ,. . . ,[t n -l]> : {X) P(t 0 > ---5 t n -l) is derivable from I' using the

rules ofinference 1-5 }.

The specification term model Ts(X) is well defined because the relation gen

erated by provability using these rules of inference is a congruence in which (by

definition using rule 4) any choice of representatives for the terms of the quotient

model will suffice in the interpretation. T hat is, by inference rule 4 the definition

is independent of the representatives tj.

The following theorem shows tha t the quotient term model defined above also

satisfies the specification 5 = (E ,r) , i.e., it is a 5 —model.

T h e o re m 4 (5 -m odel T s(X)) T s{X) is a S —model.

Proof: Let S = (E ,T) be a specification and let (3?) —> A be an

assertion in T, where

1 . A is of the form Q (to ,.. •

2. Bj is of the form P;(t‘0, . . . for all 0 < i < m — 1.

Assume a specification term model T s{X) as defined above with interpretation

function a.

It is required to show a*[(3^) Bo,. . . , Bm_i AJ = T . This is done, according

to definition 13 (Truth In A Model), by selecting an arbitrary sorted assignment

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality

function 80 and showing, using definition 11 (Assignment Function), that any

ground instance of the assertion is true in the model T s(X).

Let Oo’. y —» Drs{x) be an arbitrary sorted assignment function sending Ys in

y to [t] 6 Drs{x)- By definition 25 we can choose a representative t £ Dt^ x) for

each [t] = 0O(YS) such th a t this function can be factored as:

80 = q o 9

where

1 . 9‘. y —> D f^ x) is a substitution;

2 . q: Drv(x) —* Dts{X) is the quotient homomorphism th a t sends t to [t] and is

extended in definition 26;

3. by defn 26), (X) s(0Y 5) is derivable from T for each Y s £ S since 8$ is a sorted

assignment. Similarly for the extension 8* of 9: (X) s(0*Ys) is derivable.

Since by Theorem 1 T ^ y) is the free E-model over y in the class of all E-models

there is only one homomorphism from 7 s (y) to any E-model, i.e., 0„ = q o 0*.

y — - A rr (.v) ---------------------- -DrTj(y)

D ts(x)

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 112

1. Suppose < ^ I to l> ---i0 oIt n;- l l > G a I Pil for i = 0 , . . . ,m - 1

2 . <[#*t'0] , . . . , £ afPjJ for i = 0 , . . . , m — I 1 , since 9£ - q o 6*

3. (X) #*B;, i = 0 , . . . ,m are derivable 2, defn 26 (tru tb set for a predicate)

4. (X) s(0*Ys) is derivable Shown above

5. (X) 6* A is derivable 3,4 by Modus Ponens rule

6 . <[0* |toJ],.. •, [#*[tn_ ij]> € « | Q 1 5, defn 26 (tru th set for a predicate)

7. <^oIt o l)---)^o!t n - ll> G 6 , since 9$ = qo 0*.

Since the conditions of definition 13 for tru th in a model are satisfied:

c?i{y) B0, •. •, Bm_i —> AJ = T.

A .3 .2 S o u n d n ess A nd C o m p le te n e ss O f T h e R u le s O f In ference

T h e o re m 5 (S oundness) Any form ula (X) P (to ,. . . , t n_ i) that is derivable from

a specification S by rules 1-5 is satisfied in all S-models.

Proof: To prove soundness of each rule it is sufficient to show that the validity of

the formulas in the premise of the rule implies the validity of the formulas in the

conclusion of the rule, i.e., an untrue conclusion cannot be derived from a true

premise. Let:

• E be a signature and let M be an arbitrary E-model with universe Dm and

interpretation function a .

• 9 be an arbitrary sorted assignment 6: X —> D m -

The proof of soundness of each rule follows the statem ent of the rule.

1 . Reflexivity: (X) t = t is derivable. By induction on the structure of terms:

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 113

(a) Base case; (Xs) Xs =■ Xs

1. for all d € Dm , <d,d> € £ * I= J E-Model defn 9

2 . <0*JX,J,0*|[Xs3> G « f = l 1, assignment defn 1 1

3. a*f(Xs) Xs = XSJ = T 2 , tru th for quantification defn 13

(b) Induction step: Assume ot*f(X\) tj = tjJ = T for i = 0 , . . . ,n — 1 and

prove

a * [(#) f(t0, — , t n- l) = fCto, - - - = T , where X = CX-t and f

is an n ary function symbol.

1 . #*|tjj = fftjj, i = 1 , . . . , n assumption by defn 13, defn 11

2. 1, Dm =

3. 0 * P (to , . . . , tn_ i)] = 0 *[f(to, . . . , t n_ i) | 2 , assignment defn 1 1

^ [f (t 0> ■ • • 7t n -l) = • • - t V l) ! = T 3, assignment defn 1 1

5. a*{{X) f (t0, ■ • • , t n_ !) = f (t0, . . . , t n_x)l - T 4, defn 13

2. Symmetry: If (X) t = t ' is derivable then (X) t' = t is derivable.

1 . Assume a* I (AT) t = t'J = T

2 . 0*ft = t'J — T 1 , tru th for quantification defn 13

3 . 6*| t | = 0 *|[t'j| 2 , assignment defn 1 1

4. 0 *[t'J - <9*|tJ 3, symmetry in D M

5. #*|t' = tj = T 4, assignment defn 11

6 . a*|(A’) t ' = t j = T 5, tru th for quantification defn 13

3. Transitivity: If (X 1) t = t ' and {X") t ' = t" are derivable and if

X -•= X ' U X " then (X) t = t'' is derivable.

1 . Assume «* [(* ') t — t'J = T and a*|(Af") t' == t"J = T

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 114

2 . 0*[t = t ' | = T and 0*[t' = t " | = T 1, tru th for quantification defn 13

3 . 0 * |tj = 0 *It'J and 0 *[t']j = 0 *ft"J 2 , assignment defn 1 1

4 . 0*[t] = 0*ft"] 3, transitivity in Dm

5 . 0 *[t = t'7]j = T 4, assignment defn 11

6 . a * ! ^) t = t"] — T 5, tru th for quantification defn 13

4. Substitutivity: if (X\) t\ = t[is derivable and if X — UXi for i = 1 , . . . , n

then:

(a) for any n-ary function symbol f in E,

(X) f (t0, V l) = • • • . C l) is derivable;

1. Assume a*{(X\) tj = t-J = T, i = 0 , . . . , n - 1 hypothesis

2. 0*[tjj = 0*|tj], i = 1 , . . . , n 1, defn 11, 13

3. al(Af) = f (t 0 , . . . , t n- l) l = T rule 1 soundness

4 . ^ * P (to , . . . , tn_1)l = r i f (t o , . . . , t n_i)J 3, defn 1 1 , 13

5. a[f](0*[to],. . . , = a[f](0*[to]r • • . : 4, defn 11

6 . a I f ! (^ I t o l , . . . , 0 i V 1 l) = 2,5, DM subs

7. 0 *[f(to, . . . , t n_ i) l = 0 * If (t(j ,. . . ,t 'n_1)J 6 , defn 1 1

8 . a* [(AT) f (t0, .. . • . , 1^)] = T 7, defn 1 1 , 13

(b) for any n-ary predicate symbol P in E, if (X) P (to ,.. • , t n_ j) is deriv

able then (X) P(t'0, . . . , t ,n_ 1) is derivable.

1. Assume a*[(«Yj) tj == tjj = T, i = 1 , . . . , n hypothesis

2. 9*[tj] = 8*[t•]), i = 1 , . . . , n 1, defn 11, 13,

3. a*[(X) P (t o , . . . , t n_ !)l = T hypothesis

4. <fl*[t0] , . . . , f l* [tn_1 l > € a (P) 3 , defn 1 1 , 13

www.manaraa.com

Appendix A. Classified Horn Logic W ith EqvaJity 115

5. e a (P)

6. « • [(* ') p (t i , . . . , t ; _ ,) = r

2,4, substitution in D m

5, defn 11, 13

5. Modus Ponens: If (X) B o,.. •, Bm_i —> A is derivable and if 9: X —> E([y)

is any substitution such that:

(a) each (y) 9Bj is derivable for i = 0 , . . . m — 1 , and
t

(b) (y) s(flXs) is derivable for each Xs G <T,

then (y) 9A is derivable.

Let 90: y —> Dm be an arbitrary sorted assignment.

1. Assume o£*[([y) #Bj] = T , i = 0 , , . . m — 1

2 . 61 = T , i = 0 , . . . m — 1

3. Assume a * \fX) Bq, . . . , Bm_ i —> A| = T

4. if = T i = 0 , . . . m — 1 then 9q

5. 0SI0AJ = T

8 . a % y) 0A] = T

hypothesis

1, tru th defn 13

hypothesis

3, tru th defn 13

2,4 propositional logic

5, tru th defn 13,

T heorem 6 (C om p leten ess) For any specification S = (E,r), any formula

[X) P(t0 , . . . , t n_ i) that is satisfied in all S-models is derivable from S by rules

1-5.

Proof: Suppose (X) P(to, ■ ■ ■, t n_ i) is satisfied by all S —models, then it is satisfied

by the specification term model T s(X) defined above and

< [t0] , . . . , [t n_ i]> G a[PJ. Then, by definition 26 of a |P] , (-T) P (t0, . . . , t n_ i) is

derivable by rules 1-5.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 116

T h eo rem 7 (T g(X) Is A F ree 5 —M o d e l) Let S = (S jT) be a specification,

then T s(X) is a free S —model over X in the class of all S —models.

Proof: Let S = (S ,T) be a specification, let q: Dts (x) Dts{X) be the quotient

S —homomorphism and a be the interpretation function of definitions 25 and 26.

Let M be a 5 —model with in terpretation function and let 6' X —> Dm be

an arbitrary sorted assignment. It is required to show that there is a unique

E-hom om orphism 0'\D rs{X) D m such tha t 0 = O' o q. The proof proceeds in

two steps. First the existence of O' is shown and then its uniqueness.

X —- — — >~Dts(x) ------ Dr^(x)

Dm

The existence of O' is shown in two parts corresponding to the two part defini

tion of the quotient homomorphism q in definition 25 and its extension in definition

26.

By the soundness theorem, each derivable equation (X) t i = t 2 is satisfi-

able in M . T hat is, 0*ltj] = 0 *[t2 j which means th a t = SC ker(0*). Applying

Theorem 2, the universal property of quotients, there is a unique homomorphism

B':Th{x)l=s —> M such th a t 0* = O' o q.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 11Y

The second part of the existence proof deals with the homomorphism condition

for predicates (definition 15).

1 . < > £ a[P J iff By def 26 for representatives tj of [tj]

2 . (X) P(t0, . . . t n_i) is derivable from S iff Soundness, Completeness Thm

3 . (X) P(t0, . -. t n_i) is satisfied in all 5-models.

4. <d*{t0 l , . • ■, 0 *[tnjj> e /?|[PJ 3> M is an 5-model.

The uniqueness of 9' is shown by assuming there is another homomorphism

9":Drs{x) —► D m such that 6 — 9" o q. Since T^{X) is a free model on X , 9

is uniquely extended to 9* such that 9* = 9" o q. By theorem 2 (the universal

property of quotients) there is only one homomorphism satisfying this property

and so 3' = 9".

A .4 T ranslating C M To A n U n sorted H orn Su bset

In Chapter 1 it is claimed tha t a CM specification is co-extensive w ith its

translation to a Horn specification w ith unsorted quantifiers. To show this, it is

necessary to:

1 . define a translation from the CM language to a subset of the Horn language

with unsorted quantifiers;

2. show th a t a CM specification is co-extensive with its translation by proving

tha t logical consequence in CM agrees with logical consequence in the Horn

subset.

Any CM assertion is easily relativized to an assertion in a Horn subset by

om itting the sort subscripts from sorted variable symbols and by including in the

antecedent of the assertion a sort predicate for each of the altered variables.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 118

D efin itio n 27 (S o rt T ran s la tio n) Let S = (S ,T) be a CM specification with

variables X . Define a sort translation function 7 by:

1. for each variable symbol Xg. £ X , 7 (Xg.) = X1;

2. fo r each n-ary function symbol f, 7 (f(to ,.. *, t n_ i)) = f(7 to ,. . . , 7 t n_ i)

S. fo r each n-ary predicate symbol P, 7 (P (to ,. . . , t n_ i)) = P(7 to , . . . 57 t n„i)

4 . fo r each Horn formula, 7 ((XsQ, . - . , X ^ 1̂) Bo Bm- 1 '* A) =

(X°.........X - 1) so(X °),. . . ,«„-i(X ”- l) , 7 B0 lB m_! - ^

I f T is a set o f CM assertions, then 7 (T) is the sorted translation of T.

The definition of tru th In a model for a translated formula is like definition

13 for a CM formula, except 9 is 011 assignment function instead of a sorted

assignment function.

D e fin itio n 28 (T ru th In A M o d e l (U n so rte d V a riab les)) The tru th value

o f a closed formula (X) T with unsorted variables in a model M with universe

D m and interpretation function a is defined by extending a to a function a*;

a*[[(<T) — T if O'JFI = T fo r any (unsorted) assignment 9U: X —>

D m , and a * |(X) IF} = F otherwise.

Satisfaction (f=) with a ’ is defined analogously to the a* case.

A CM specification can be related to its unsorted relativisaticn by the following

theorem which shows that a CM formula (X) T is a logical consequence of a CM

specification iff the translation of (X) F is a logical consequence of the translation

of the CM specification. F irst, a sort lemma:

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 119

L em m a 1 (S o rt) Let S = (E, T) be a CM specification, let 7 be a sort translation

function, let M = (Dm , a) be any S-model and suppose (X) IF € T, then

a * [(*) *] = T i f f < l 7 (W ^) l = r

Proof: Let (X) T be (X ^ , .. • jX ""^) Bo, • • •, Bm_i -» A, let 9 be any sorted as

signment and let 6 = 6U o 7 , then:

1. a * l (X) F } = T i f f defn 13

2 . 0*JBo, . . . , Bm_! -» A] = T iff defn 11

3. if 0*|BoJ = T, . . . , 9* = T then 9*[A] = T iff 9 = 9U 0 7 ,

i . if # ; M x 0)] = t , . . . , (X "-1)] = t , « ; i 7 b 0i = t , . . . , e ;[7 Bm_1) = t

then tf;[7Al = T iff defn 11

5- ^[so (X <l) , . . - , s n-l(X ,,- 1) ,7 Bo , . . - , 7 Bn,_i - * 7 A1 “ T i f f defn 1 3

6 . < b ((^) ^) l = T

T h e o re m 8 (S o rt) Let S = (S ,T) be a CM specification and let 7 be a sort

translation function, then

r t= (*) r iff 7 (r) b 7 « *) F)

Proof: Let M = (Dm, 01) be a E-model.

1 . Assume T (= (X) T

2 . Assume for all 7 ((y) Q) £ 7 (r) , M j= 7((3^) G)

3. for all 7 ((y) Q) e 7 (r) , < I 7 ((y) Q)\ = T

4 . f o r a U (y) a e r , a * |[(y) a] | = r

5. M 1= T, i.e. M is an S-model

2, defn 14

3, Sort Lemma

1,4 defn 14

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 120

6 . M \= {X) T 1,5 defn 14

7. * ' \ { X) T \ = T 6 , defn 14

8 . 7, Sort Lemma

9. 8 , defn 14

1 0 . 7(r)h7((*)*0 2,9 defn 14

1 . Assume 7 (1?) b ■y{{X) fF)

2 . Assume for all ([V) Q G I \ M b (3^) G

3. for all (?) £ G r, a*[(y) G} = T 2, defn 14

4. for all 7 ((;y) Q) € 7 (r), ajUMO7) S)I = T 3, Sort Lemma

5. M b 7 (f) 1,4 defn 14

6 . M b 7((*) F) 1,5 defn 14

7. < f o ((*) ?)] = T 6 , defn 14

8 . oc*l{X)Fj = T 7, Sort Lemma

9. M b {X) T 8 , defn 14

1 0 . E ^ { X) T 2,9 defn 14

A .5 CM Ind u ction Princip le

Let S = (E,r) be a CM specification, let s (E £ be a sort symbol and let

(Xs, XSl, . . . , XSk) V be a closed atomic formula to prove by induction on the vari

able xs.
Suppose also tba t S has a set of variable symbols X and that the declaration

assertions of S for sort s G E are (X]) A\ —> s(tj), i = 1, . . . , n. where the body A\

of each declaration assertion is either empty or a set of atomic assertions. X' (X

is the set of variables occurring in the i-th declaration assertion and Ag C X ‘ is

the subset of s-sorted variables in the i-th declaration assertion.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 121

Define also:

1 . —» C\ for i = l , . . . , n , is a sorted substitution of all the variables of

sort s in the i-th declaration assertion by new constant symbols not already

appearing in 5, where C = UC{ and all C; are disjoint;

2 . s(cj) for all cj £ C, j = 1 , . . . , m, i.e., the new constant symbols are all of sort

s;

3. crj: Xs —> cj, j = 1 , . . . , m, is a substitution for the variable Xs of V by the

j-th new constant. This substitution results in an induction hypothesis.

4. <r{: Xs —» 7 ;tj, i = 1 , . . . , n, is a substitution for the variable Xs of V by the

(transformed) term of the head of the i-th declaration assertion. The trans

formation 7 ,- makes the term t ground in the sort s. This substitution results

in a base case to prove when the term tj contains no variable symbols of sort

s and in an induction step to prove otherwise.

The CM Induction Principle is:

If by assuming the induction hypothesis tha t the following are all derivable:

(Xsji ■ • • >Xs^) ■> j = 1 , . . . , m

we can derive all of the following desired conclusions:

(X.j j • • • > XS|() (r\V , i = 1 , . . . , n

then we can conclude

(X1 JXSl, . . . , x Sk) V

in the initial model.

T he proof th a t the CM induction principle holds in the initial model Ts is by

induction on the number of quantifiers in the following base and induction cases.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 122

T heorem 9 (C M Induction P rin cip le , B ase Case) The CM induction prin

ciple holds for formulas quantified over just one variable.

Proof: Let V be P(XS) and suppose tha t the induction principle is applied to

(Xs) P(XS). It is necessary to show in the free model Ts (X) with interpretation

function a tha t crftj £ a |s | implies a f t j £ a |P j . This is also sufficient since by

the surjectivity (by construction) of a , we know that every element of the free

model has a term representative.

Assume the contrary and let t be a term with the property that a|t]j £ a |s | but

a|t]j ft a [P j. Suppose also that t is of minimum depth 1 among all such terms with

this property. There are two cases. If cr'fP is a base case, then it is derivable and

by CM Soundness the assumption is contradicted. Assume then the other case

th a t t contains a variable of sort s. Since t = crjtj for some 1 < i < n is a minimal

element for which P does not hold, i.e., a:[[crj't;J ^ otfPJ, there is a subterm <TjXs of

t for some 1 < j < m for which P holds. B ut by the desired conclusion part of the

CM induction principle (and CM Soundness) then also P must hold for t — cr-tj,

a contradiction. Therefore the assumption th a t there is such a t must be false,

hence, a [t | £ a[PJ.

T h eorem 10 (C M Induction P rin cip le , Induction C ase) I f the CM induc

tion principle holds for formulas quantified over k variables, then the CM induction

principle holds fo r formulas quantified over k+1 variables.

Proof: Let V be P(XS, XSl, . . . , Xs^) and suppose that the induction principle is

applied to (Xs,XSl, . . . ,XSk) P(Xs,XSl, . . . ,XSk). Assume also that the induction

lrIt.rm depth is well founded because it is inductively defined for Ts(X) by: 1) for a constant
symbol the depth is zero and 2) for a complex term the depth is one greater than the maximum
depth of its subterms.

www.manaraa.com

Appendix A. Classified Horn Logic W ith Equality 123

principle holds for all formulas quantified over k variables. It is necessary to show

in the free model Ts(X) with in terpretation function a th a t aflt] G afs] implies

that a [< t , u2, . . . , uk>J G a|[PJ.

Assume the contrary and let t be a te rm with the property tha t a | t j G afs j but

a |< t , u i , . . . , U|t > | afPJ. Suppose also that t is of minimum depth among all

such terms with this property. There are two cases. If <r\V is a base case, then it is

derivable and by CM Soundness the assum ption is contradicted. Assume then the

other case tha t t contains a variable of sort s. Since t — er'tj for some 1 < i < n is a

m inimal element for which af<erj'tj, u j, . . . , u^>J 0 a[[P| (P does not hold), there

is a subterm <rjXs of t for some 1 < j < m for which a[<rrjXs, u j , . . . , ujt>] G a[P]

(P holds), assuming CM induction holds for formulas w ith k variables. B ut by

the desired conclusion section of the CM induction principle then also P must

hold for t = cr[tj, i.e., a |<crjtj, Ui , . . . , ujl>J G a |P J , a contradiction. Therefore

the assumption that there is such a t must be false, hence, a | t j G afsj implies

a I < * » U1 »■ • • , u k > 1 6 a [P] .

www.manaraa.com

B ibliograph y

[ACHT6] E. A. Ashcroft, M. Clint, and C. A. R. Hoare. Remarks on “program proving:
Jumps and functions by M. Clint and C. A. R. Hoare” . Acta Information, 6:317
318, 1976.

[Apt81] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey - part 1 . ACM TYans.
on Programming Languages and Systems, 3(4):431-483, 1981.

[BEPP87] E.K. Blum, H. Ehrig, and F. Parisi-Presicce. Algebraic specification of
mod des and their basic interconnections. JCSS , 34:293-339, 1987.

[BG77] R. M. Burstall and J. A. Goguen. P u tting theories together to make specifi
cations. In P n c . Fifth Int. Joint Conf. Artificial Intelligence, volume 5, pages
1045-1058, 1977.

[BL70] G. Birkoff and D. Lipson. Heterogeneous algebras. J. Combinatorial Theory,
8:115-133, 1970.

[EK81] H. Ehrig and H .J. Kreowski. Example: Kwic-index generation. In Lecture
Notes in Computer Science, Vol 134, pages 78-83. Springer-Verlag, 1981.

[EM85] H. Ehrig and B. Mahr. Fundamentals o f Algebraic Specification 1: Equations
and Initial Semantics. Springer-Verlag, 1985.

[FGM087] Kokichi Fatatsugi, Joseph Goguen, Jose Meseguer, and Koji Okada. Pa
ram eterized programming in OBJ2. In 9-th International Conference on Soft
ware Engineering, pages 51-60. IE EE Computer Society, 1987.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proc. Symp. on Appl. Math.,
19, 1967.

[FPB75] Jr. Frederick P. Brooks. The Mythical Man-Month. Addison Wesley, 1975.

[GB84] J . A. Goguen and R. M. Burstall. Introducing institutions. In Lecture Notes
in Computer Science, Vol 164, pages 221-256. Springer-Verlag, 1984.

[GH78] J.V. G uttag and J .J . Horning. The algebraic specification of abstract data
types. Acta Informatica, 10:27-52, 1978.

[GHW85] J.V. Guttag, J .J . Horning, and J.M . Wing. Larch in five easy pieces. Tech
nical report, DEC Systems Research Center, 1985.

124

www.manaraa.com

Bibliography 125

[GJM85] Joseph A. Goguen, J. Jouannaud, and Jose Meseguer. Operational seman
tics of order-sorted algebra. In Lecture Notes in Computer Science, Vol 194-
Springer-Verlag, 1985.

[GM82] J. Goguen and J. Meseguer. Universal realization, persistent interconnection
and implementation of abstract modules. In 9-th International Colloquim on
Automata, Languages and Programming (LNCS 140), pages 265-281. Springer-
Verlag, 1982.

[GM87a] J. Goguen and J. Meseguer. Order sorted algebra solves the constructor-
selector, multiple representation and coercion problems. J:i LNCS. Springer
Verlag, 1987.

[GM87b] Joseph A. Goguen and Jose Meseguer. Models and equality for logical pro
gramming. In TAPSOFT 87, pages 1-22. Springer-Verlag, 1987.

[GM87c] Joseph A. Goguen and Jose Meseguer. Unifying Functional, Object-Oriented
and Relational Programming with Logical Semantics, pages 417-477. MIT Press,
1987.

[GM89] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra i: Equational de
duction for multiple inheritance, overloading, exceptions and partial operations.
Technical Report SRI-CSL-89-10, SRI International, 1989.

[GogCl] J . A. Goguen. Ordinary specification of kwic-index generation. In Lecture
Notes in Computer Science, Vol 134, pages 114-117. Springer-Verlag, 1981.

[Gog8 6] J . A. Goguen. Reusing and interconnecting software components. Computer,
February 1986.

[Gog90] Joseph A. Goguen. An algebraic approach to refinement. In VDM 1990,
pages 1-14. Springer-Verlag, 1990.

[GTW78] J.A. Goguen, J.W . Thatcher, and E.G. Wagner. An Initial Algebra Ap
proach to the Specification, Correctness and Implementation of Abstract Data
Types, pages 80-149. Prentice-Hall, 1978.

[Hen80] K.L. Henniger. Specifying software requirements for complex systems: New
techniques and their applications. IE E E Trans. Software Engineering, SE-6:2-
13, 1980.

[11080] Gerard Huet and Dereck C. Oppen. Equations and rewrite rules: A survey.
Technical Report STAN-CS-80-785, Stanford University, 1980.

www.manaraa.com

Bibliography 126

[KL83] B. Kutzler and F. Lichtenberger. Bibliography on Abstract Data Types.
Springer-Verlag, 1983.

[Maj77] Mila E. M ajster. Limits of the “algebraic” specification of abstract data types.
SIG P LAN Notices, pages 37-42, October 1977.

[Mak87] J. A. Makowsky. Why Horn formulas m atter in computer science: Initial
structures and generic examples. J. o f Computer and System Science, 34:266-
292, 1987.

[MG85] Jose Meseguer and Joseph A. Goguen. Initiality, induction and computability.
In Algebraic Methods in Semantics, pages 459-551. Cambridge University Press,
1985.

[MW81] Zohar M anna and Richard Waldinger. Problematic features of programming
languages: A situational-calculus apprc -h. Informatica, 16, 1981.

[MW8 6] Zohar M anna and Richard Waldinger. Special relations in automated deduc
tion. J.A .C .M , 33, 1986.

[MW87a] Zohar M anna and Richard Waldinger. The deductive synthesis of imperative
lisp programs. In AAAI-87, 1987.

[MW87b] Zohar Manna and Richard Waldinger. How to clear a block: A theory of
plans. J. o f Aub ,ated Reasoning, 3:343-377, 1987.

[MW87c] Zohar M anna and Richard W aldinger. The origin of a binary-search
paradigm. Science o f Computer Programming, 9:37-83, 1987.

[MW89] Zohar M anna and Richard Waldinger. The Logical Basis fo r Computer Pro
gramming, vol. 2: Deductive Techniques. Addison-Wesley, 1989.

[Par71] David L. Parnas. Information distribution aspects of design methodology.
Proc IFIP Congress, 1971.

[Par72a] David L. Parnas. On the criteria to be used in decomposing systems into
modules. C.A.C.M ., December 1972.

[Par72b] David L. Parnas. A technique for software module specification with exam
ples. C.A.C.M ., May 1972.

[Par84] David L. Parnas. Software engineering principles. INFOR Canadian Journal
of Operations Research and Inform ation Processing, 44(4), November 1984.

[PB78] D.L. Parnas and W. Bartussek. Using traces to write abstract specifications
for software. In Lecture Notes in Computer Science 65. Springer-Verlag, 1978.

www.manaraa.com

Bibliography 127

[Wad82] W.W. Wadge. Classified algebras. Technical report, University of Warwick,
1982.

[Wad90] W.W. Wadge. Higher order Horn logic programming. Technical report, Uni
versity of Victoria, 1990.

[Wan79] Michell Wand. Final algebra semantics and data type extensions. JGSS,
19:27-44, 1979.

[Wik87] Ake Wikstrom. Functional Progamming Using Standard ML. Prentice Hall,
1987.

www.manaraa.com

VITA

Surname: Stuart Given Names: ^Gordon F.

Place of Birth: St. Boniface, M anitoba Date of Birth: July 19, 1948

Educational Institutions Attended:

Publications:

G. S tuart and I. Barrodale. A Fortran program for linear least-squares prob
lems of variable degree. In 4~th Manitoba Conf. on Numerical Math., pages
191-204, 1974.

G. S tuart and I. Barrodale. A new variant of Gaussian elimination. J. Inst.
Maths Applies., pages 39-47, 1977.

G. S tuart and I. Barrodale. Algorithm 576: A Fortran program for solving
A x=b. A.G.M . Trans on Mathematical Software, pages 391-397, 1981.

University of Victoria
University of Western Ontario
University of Victoria

1966 to 1970
1970 to 1973
1983 to 1991

Degrees Awarded:

B.Sc. (Honours) 1970
1973M.Sc.

G. S tuart and J.K Mullin. Optim um blocking factors for a mix of sequentially
processed jobs. The Computer Journal, (3):224—228, 1972.

www.manaraa.com

PARTIAL COPYRIGHT NOTICE

I hereby grant the right to lend my dissertation to users of the University of
Victoria Library, and to make single copies only for such users or in response to
a request from the Library of any other university, or similar institution, on its
behalf of for one of its users. I further agree th a t permission for extensive copying
of this dissertation for scholarly purposes may be granted by me or a member of
the University designated by me. I t is understood tha t copying or publication
of this dissertation for financial gain shall not be allowed without my written
permission.

Title of Dissertation: Classified Models for Software Engineering

Author: / — ^ ^
7 (Signature)

GORDON F. STUART

— i t , u < 1-1 , (V cl }
(Date)

